Application of spatial data and 3S robotic technology in digital city planning

Yunyan Chang, Jian Xu
{"title":"Application of spatial data and 3S robotic technology in digital city planning","authors":"Yunyan Chang,&nbsp;Jian Xu","doi":"10.1016/j.ijin.2023.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>This article uses spatial data and 3S (Spatial, Surveying, and Remote Sensing) technology to enhance digital city planning. The methodology integrates WebGIS Big data, statistical feature extraction techniques, and strategic planning to create a comprehensive framework for digital urban planning. Spatial information point calibration ensures accurate spatial positioning during the planning process. At the same time, data fusion and fuzzy C-means clustering analysis are utilized to detect and analyze WebGIS data within the digital city planning context. The proposed model incorporates a piecewise fitting method within the Big data integration scheduling framework for digital city spatial planning. A C/S (Client/Server) architecture and ARM-embedded technology have been developed to establish a robust digital city planning system to support this approach. This system encompasses modules for WebGIS information collection, bus control, database management, human-machine interaction, and data processing terminals. Simulation results demonstrate that the method significantly reduces delays in digital city planning and design. When analyzing a data scale of 100, the method exhibits an 83.4% lower delay than the fuzzy method. Although delays increase with larger data scales, even at a scale of 400, the method still offers a 43.1% reduction compared to the fuzzy method. Across varying data scales, the proposed method consistently maintains approximately 60% lower latency than the rough set method. This method showcases superior intelligence and exhibits strong capabilities in accessing and scheduling WebGIS data effectively.</p></div>","PeriodicalId":100702,"journal":{"name":"International Journal of Intelligent Networks","volume":"4 ","pages":"Pages 211-217"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Networks","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666603023000222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article uses spatial data and 3S (Spatial, Surveying, and Remote Sensing) technology to enhance digital city planning. The methodology integrates WebGIS Big data, statistical feature extraction techniques, and strategic planning to create a comprehensive framework for digital urban planning. Spatial information point calibration ensures accurate spatial positioning during the planning process. At the same time, data fusion and fuzzy C-means clustering analysis are utilized to detect and analyze WebGIS data within the digital city planning context. The proposed model incorporates a piecewise fitting method within the Big data integration scheduling framework for digital city spatial planning. A C/S (Client/Server) architecture and ARM-embedded technology have been developed to establish a robust digital city planning system to support this approach. This system encompasses modules for WebGIS information collection, bus control, database management, human-machine interaction, and data processing terminals. Simulation results demonstrate that the method significantly reduces delays in digital city planning and design. When analyzing a data scale of 100, the method exhibits an 83.4% lower delay than the fuzzy method. Although delays increase with larger data scales, even at a scale of 400, the method still offers a 43.1% reduction compared to the fuzzy method. Across varying data scales, the proposed method consistently maintains approximately 60% lower latency than the rough set method. This method showcases superior intelligence and exhibits strong capabilities in accessing and scheduling WebGIS data effectively.

空间数据和3S机器人技术在数字城市规划中的应用
本文利用空间数据和3S(空间、测量和遥感)技术来加强数字城市规划。该方法集成了WebGIS大数据、统计特征提取技术和战略规划,为数字城市规划创建了一个全面的框架。空间信息点校准确保了规划过程中准确的空间定位。同时,利用数据融合和模糊C均值聚类分析对数字城市规划背景下的WebGIS数据进行检测和分析。所提出的模型将分段拟合方法纳入数字城市空间规划的大数据集成调度框架中。为了建立一个强大的数字城市规划系统来支持这种方法,已经开发了一种C/S(客户机/服务器)体系结构和ARM嵌入式技术。该系统包括WebGIS信息采集、总线控制、数据库管理、人机交互和数据处理终端等模块。仿真结果表明,该方法显著减少了数字城市规划设计中的延迟。当分析100的数据量表时,该方法的延迟比模糊方法低83.4%。尽管延迟随着数据规模的扩大而增加,即使在400的规模下,该方法与模糊方法相比仍能减少43.1%。在不同的数据尺度上,所提出的方法始终保持比粗糙集方法低约60%的延迟。该方法显示出优越的智能性,在有效访问和调度WebGIS数据方面表现出强大的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信