Dynamic Tobit models

IF 2 Q2 ECONOMICS
Andew Harvey , Yin Liao
{"title":"Dynamic Tobit models","authors":"Andew Harvey ,&nbsp;Yin Liao","doi":"10.1016/j.ecosta.2021.08.012","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Score-driven models provide a solution to the problem of modeling time series<span> when the observations are subject to censoring and location and/or scale may change over time. The method applies to generalized t and EGB2 distributions, as well as to the normal distribution. </span></span>Explanatory variables<span> can be included, making static Tobit models a special case. A set of Monte Carlo experiments show that the score-driven model provides good forecasts even when the true model is parameter-driven. The viability of the new models is illustrated by fitting them to data on Chinese </span></span>stock returns.</p></div>","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":"26 ","pages":"Pages 72-83"},"PeriodicalIF":2.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452306221001064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Score-driven models provide a solution to the problem of modeling time series when the observations are subject to censoring and location and/or scale may change over time. The method applies to generalized t and EGB2 distributions, as well as to the normal distribution. Explanatory variables can be included, making static Tobit models a special case. A set of Monte Carlo experiments show that the score-driven model provides good forecasts even when the true model is parameter-driven. The viability of the new models is illustrated by fitting them to data on Chinese stock returns.

动态Tobit模型
当观测受到审查并且位置和/或尺度可能随时间变化时,分数驱动模型为时间序列建模问题提供了解决方案。该方法适用于广义t和EGB2分布,也适用于正态分布。可以包含解释性变量,使静态Tobit模型成为一种特殊情况。一组蒙特卡罗实验表明,即使真实模型是参数驱动的,分数驱动模型也能提供良好的预测。通过将新模型与中国股票回报数据进行拟合,说明了新模型的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
10.50%
发文量
84
期刊介绍: Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信