Zhuyu Yang , Bruno Barroca , Katia Laffréchine , Alexandre Weppe , Aurélia Bony-Dandrieux , Nicolas Daclin
{"title":"A multi-criteria framework for critical infrastructure systems resilience","authors":"Zhuyu Yang , Bruno Barroca , Katia Laffréchine , Alexandre Weppe , Aurélia Bony-Dandrieux , Nicolas Daclin","doi":"10.1016/j.ijcip.2023.100616","DOIUrl":null,"url":null,"abstract":"<div><p>Critical infrastructure systems (CISs) play an essential role in modern society, as they are important for maintaining critical social functions, economic organisation, and national defence. Recently, CISs resilience has gained popularity in both academic and policy filed facing increased natural or technological disasters. Resilience assessments have become convenient and common tools for disaster management, as assessment results provide useful information to CIS managers. However, CISs resilience assessment is facing challenges of being practical to use in operational risk management.</p><p>Although there are many existing assessments for CISs resilience, some shortcomings relating to assessment criteria, which cannot turn resilience useful in practical operation, are frequent in their assessment process. Existing assessments are based on different definitions, which makes criteria generalization difficult. Besides, these assessments are not comprehensive enough. Especially, few assessments address both the cost, effectiveness, and safety of optimisation actions. Moreover, most of the suggested criteria are not specific enough for being used for practical CISs risk management in real cases.</p><p>This article develops therefore a multi-criteria framework (MCF) for CISs resilience, consisting of general criteria and a guide for defining specific sub-criteria. In this MCF, the side effects, cascading effects and cost-benefit in resilience scenarios are considered indispensable for CISs resilience assessment. The paper also presents an example of the application of the developed guide through two detailed scenarios, one on a single infrastructural system affected by a natural disaster, and the other addressing the interdependence of this infrastructural system and an urban healthcare system. The designed MCF contributes to the operationalisation and comprehensiveness of CISs resilience assessments.</p></div>","PeriodicalId":49057,"journal":{"name":"International Journal of Critical Infrastructure Protection","volume":"42 ","pages":"Article 100616"},"PeriodicalIF":4.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Critical Infrastructure Protection","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187454822300029X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
Critical infrastructure systems (CISs) play an essential role in modern society, as they are important for maintaining critical social functions, economic organisation, and national defence. Recently, CISs resilience has gained popularity in both academic and policy filed facing increased natural or technological disasters. Resilience assessments have become convenient and common tools for disaster management, as assessment results provide useful information to CIS managers. However, CISs resilience assessment is facing challenges of being practical to use in operational risk management.
Although there are many existing assessments for CISs resilience, some shortcomings relating to assessment criteria, which cannot turn resilience useful in practical operation, are frequent in their assessment process. Existing assessments are based on different definitions, which makes criteria generalization difficult. Besides, these assessments are not comprehensive enough. Especially, few assessments address both the cost, effectiveness, and safety of optimisation actions. Moreover, most of the suggested criteria are not specific enough for being used for practical CISs risk management in real cases.
This article develops therefore a multi-criteria framework (MCF) for CISs resilience, consisting of general criteria and a guide for defining specific sub-criteria. In this MCF, the side effects, cascading effects and cost-benefit in resilience scenarios are considered indispensable for CISs resilience assessment. The paper also presents an example of the application of the developed guide through two detailed scenarios, one on a single infrastructural system affected by a natural disaster, and the other addressing the interdependence of this infrastructural system and an urban healthcare system. The designed MCF contributes to the operationalisation and comprehensiveness of CISs resilience assessments.
期刊介绍:
The International Journal of Critical Infrastructure Protection (IJCIP) was launched in 2008, with the primary aim of publishing scholarly papers of the highest quality in all areas of critical infrastructure protection. Of particular interest are articles that weave science, technology, law and policy to craft sophisticated yet practical solutions for securing assets in the various critical infrastructure sectors. These critical infrastructure sectors include: information technology, telecommunications, energy, banking and finance, transportation systems, chemicals, critical manufacturing, agriculture and food, defense industrial base, public health and health care, national monuments and icons, drinking water and water treatment systems, commercial facilities, dams, emergency services, nuclear reactors, materials and waste, postal and shipping, and government facilities. Protecting and ensuring the continuity of operation of critical infrastructure assets are vital to national security, public health and safety, economic vitality, and societal wellbeing.
The scope of the journal includes, but is not limited to:
1. Analysis of security challenges that are unique or common to the various infrastructure sectors.
2. Identification of core security principles and techniques that can be applied to critical infrastructure protection.
3. Elucidation of the dependencies and interdependencies existing between infrastructure sectors and techniques for mitigating the devastating effects of cascading failures.
4. Creation of sophisticated, yet practical, solutions, for critical infrastructure protection that involve mathematical, scientific and engineering techniques, economic and social science methods, and/or legal and public policy constructs.