{"title":"Tight FPT Approximation for Socially Fair Clustering","authors":"Dishant Goyal, Ragesh Jaiswal","doi":"10.1016/j.ipl.2023.106383","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we study the <em>socially fair k-median/k-means problem</em>. We are given a set of points <em>P</em> in a metric space <span><math><mi>X</mi></math></span> with a distance function <span><math><mi>d</mi><mo>(</mo><mo>.</mo><mo>,</mo><mo>.</mo><mo>)</mo></math></span>. There are <em>ℓ</em> groups: <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>⊆</mo><mi>P</mi></math></span>. We are also given a set <em>F</em> of feasible centers in <span><math><mi>X</mi></math></span>. The goal in the socially fair <em>k</em>-median problem is to find a set <span><math><mi>C</mi><mo>⊆</mo><mi>F</mi></math></span> of <em>k</em> centers that minimizes the maximum average cost over all the groups. That is, find <em>C</em> that minimizes the objective function <span><math><mi>Φ</mi><mo>(</mo><mi>C</mi><mo>,</mo><mi>P</mi><mo>)</mo><mo>≡</mo><msub><mrow><mi>max</mi></mrow><mrow><mi>j</mi></mrow></msub><mo></mo><mo>{</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>x</mi><mo>∈</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub><mi>d</mi><mo>(</mo><mi>C</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>/</mo><mo>|</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>|</mo><mo>}</mo></math></span>, where <span><math><mi>d</mi><mo>(</mo><mi>C</mi><mo>,</mo><mi>x</mi><mo>)</mo></math></span> is the distance of <em>x</em> to the closest center in <em>C</em>. The socially fair <em>k</em>-means problem is defined similarly by using squared distances, i.e., <span><math><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mo>.</mo><mo>,</mo><mo>.</mo><mo>)</mo></math></span> instead of <span><math><mi>d</mi><mo>(</mo><mo>.</mo><mo>,</mo><mo>.</mo><mo>)</mo></math></span><span>. The current best approximation guarantee for both of the problems is </span><span><math><mi>O</mi><mrow><mo>(</mo><mfrac><mrow><mi>log</mi><mo></mo><mi>ℓ</mi></mrow><mrow><mi>log</mi><mo></mo><mi>log</mi><mo></mo><mi>ℓ</mi></mrow></mfrac><mo>)</mo></mrow></math></span> due to Makarychev and Vakilian (COLT 2021). In this work, we study the fixed-parameter tractability of the problems with respect to parameter <em>k</em>. We design <span><math><mo>(</mo><mn>3</mn><mo>+</mo><mi>ε</mi><mo>)</mo></math></span> and <span><math><mo>(</mo><mn>9</mn><mo>+</mo><mi>ε</mi><mo>)</mo></math></span><span> approximation algorithms for the socially fair </span><em>k</em>-median and <em>k</em>-means problems, respectively, in FPT (fixed-parameter tractable) time <span><math><mi>f</mi><mo>(</mo><mi>k</mi><mo>,</mo><mi>ε</mi><mo>)</mo><mo>⋅</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>, where <span><math><mi>f</mi><mo>(</mo><mi>k</mi><mo>,</mo><mi>ε</mi><mo>)</mo><mo>=</mo><msup><mrow><mo>(</mo><mi>k</mi><mo>/</mo><mi>ε</mi><mo>)</mo></mrow><mrow><mi>O</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> and <span><math><mi>n</mi><mo>=</mo><mo>|</mo><mi>P</mi><mo>∪</mo><mi>F</mi><mo>|</mo></math></span>. The algorithms are randomized and succeed with a probability of at least <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo></math></span>. Furthermore, we show that if <span><math><mi>W</mi><mo>[</mo><mn>2</mn><mo>]</mo><mo>≠</mo><mrow><mi>FPT</mi></mrow></math></span>, then better approximation guarantees are not possible in FPT time.</p></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"182 ","pages":"Article 106383"},"PeriodicalIF":0.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020019023000261","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we study the socially fair k-median/k-means problem. We are given a set of points P in a metric space with a distance function . There are ℓ groups: . We are also given a set F of feasible centers in . The goal in the socially fair k-median problem is to find a set of k centers that minimizes the maximum average cost over all the groups. That is, find C that minimizes the objective function , where is the distance of x to the closest center in C. The socially fair k-means problem is defined similarly by using squared distances, i.e., instead of . The current best approximation guarantee for both of the problems is due to Makarychev and Vakilian (COLT 2021). In this work, we study the fixed-parameter tractability of the problems with respect to parameter k. We design and approximation algorithms for the socially fair k-median and k-means problems, respectively, in FPT (fixed-parameter tractable) time , where and . The algorithms are randomized and succeed with a probability of at least . Furthermore, we show that if , then better approximation guarantees are not possible in FPT time.
期刊介绍:
Information Processing Letters invites submission of original research articles that focus on fundamental aspects of information processing and computing. This naturally includes work in the broadly understood field of theoretical computer science; although papers in all areas of scientific inquiry will be given consideration, provided that they describe research contributions credibly motivated by applications to computing and involve rigorous methodology. High quality experimental papers that address topics of sufficiently broad interest may also be considered.
Since its inception in 1971, Information Processing Letters has served as a forum for timely dissemination of short, concise and focused research contributions. Continuing with this tradition, and to expedite the reviewing process, manuscripts are generally limited in length to nine pages when they appear in print.