Towards Deep Interpretable Features

Robert Hu, Dino Sejdinovic
{"title":"Towards Deep Interpretable Features","authors":"Robert Hu,&nbsp;Dino Sejdinovic","doi":"10.1016/j.jcmds.2022.100067","DOIUrl":null,"url":null,"abstract":"<div><p>The problem of interpretability for binary image classification is considered through the lens of kernel two-sample tests and generative modeling. A feature extraction framework coined <span>Deep Interpretable Features</span><svg><path></path></svg> is developed, which is used in combination with IntroVAE, a generative model capable of high-resolution image synthesis. Experimental results on a variety of datasets, including COVID-19 chest x-rays demonstrate the benefits of combining deep generative models with the ideas from kernel-based hypothesis testing in moving towards more robust interpretable deep generative models.</p></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"6 ","pages":"Article 100067"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277241582200027X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The problem of interpretability for binary image classification is considered through the lens of kernel two-sample tests and generative modeling. A feature extraction framework coined Deep Interpretable Features is developed, which is used in combination with IntroVAE, a generative model capable of high-resolution image synthesis. Experimental results on a variety of datasets, including COVID-19 chest x-rays demonstrate the benefits of combining deep generative models with the ideas from kernel-based hypothesis testing in moving towards more robust interpretable deep generative models.

走向深层可解释特征
从核两样本检验和生成建模的角度考虑了二值图像分类的可解释性问题。开发了一个被称为“深度可解释特征”的特征提取框架,该框架与IntroVAE(一种能够进行高分辨率图像合成的生成模型)结合使用。包括新冠肺炎胸部x光片在内的各种数据集的实验结果表明,将深度生成模型与基于核的假设测试的思想相结合,有助于实现更强大的可解释深度生成模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信