{"title":"Bipol: A novel multi-axes bias evaluation metric with explainability for NLP","authors":"Lama Alkhaled , Tosin Adewumi , Sana Sabah Sabry","doi":"10.1016/j.nlp.2023.100030","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce bipol, a new metric with explainability, for estimating social bias in text data. Harmful bias is prevalent in many online sources of data that are used for training machine learning (ML) models. In a step to address this challenge we create a novel metric that involves a two-step process: corpus-level evaluation based on model classification and sentence-level evaluation based on (sensitive) term frequency (TF). After creating new models to classify bias using SotA architectures, we evaluate two popular NLP datasets (COPA and SQuADv2) and the WinoBias dataset. As additional contribution, we created a large English dataset (with almost 2 million labeled samples) for training models in bias classification and make it publicly available. We also make public our codes.</p></div>","PeriodicalId":100944,"journal":{"name":"Natural Language Processing Journal","volume":"4 ","pages":"Article 100030"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949719123000274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce bipol, a new metric with explainability, for estimating social bias in text data. Harmful bias is prevalent in many online sources of data that are used for training machine learning (ML) models. In a step to address this challenge we create a novel metric that involves a two-step process: corpus-level evaluation based on model classification and sentence-level evaluation based on (sensitive) term frequency (TF). After creating new models to classify bias using SotA architectures, we evaluate two popular NLP datasets (COPA and SQuADv2) and the WinoBias dataset. As additional contribution, we created a large English dataset (with almost 2 million labeled samples) for training models in bias classification and make it publicly available. We also make public our codes.