{"title":"Forecasting value-at-risk and expected shortfall in large portfolios: A general dynamic factor model approach","authors":"Marc Hallin , Carlos Trucíos","doi":"10.1016/j.ecosta.2021.04.006","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Beyond their importance from the regulatory policy point of view, Value-at-Risk (VaR) and Expected Shortfall (ES) play an important role in risk management, portfolio allocation, capital level requirements, trading systems, and hedging strategies. However, due to the </span>curse of dimensionality<span>, their accurate estimation and forecast in large portfolios is quite a challenge. To tackle this problem, two procedures are proposed. The first one is based on a filtered historical simulation method in which high-dimensional conditional covariance matrices are estimated via a general </span></span>dynamic factor<span> model with infinite-dimensional factor space and conditionally heteroscedastic factors; the other one is based on a residual-based bootstrap scheme. The two procedures are applied to a panel with concentration ratio close to one. Backtesting and scoring results indicate that both VaR and ES are accurately estimated under both methods, which both outperform the existing alternatives.</span></p></div>","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":"27 ","pages":"Pages 1-15"},"PeriodicalIF":2.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ecosta.2021.04.006","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452306221000563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Beyond their importance from the regulatory policy point of view, Value-at-Risk (VaR) and Expected Shortfall (ES) play an important role in risk management, portfolio allocation, capital level requirements, trading systems, and hedging strategies. However, due to the curse of dimensionality, their accurate estimation and forecast in large portfolios is quite a challenge. To tackle this problem, two procedures are proposed. The first one is based on a filtered historical simulation method in which high-dimensional conditional covariance matrices are estimated via a general dynamic factor model with infinite-dimensional factor space and conditionally heteroscedastic factors; the other one is based on a residual-based bootstrap scheme. The two procedures are applied to a panel with concentration ratio close to one. Backtesting and scoring results indicate that both VaR and ES are accurately estimated under both methods, which both outperform the existing alternatives.
期刊介绍:
Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.