Mallory Dolorfino , Luke Martin , Zachary Slonim , Yuxuan Sun , Yong Yang
{"title":"Classifying solvable primitive permutation groups of low rank","authors":"Mallory Dolorfino , Luke Martin , Zachary Slonim , Yuxuan Sun , Yong Yang","doi":"10.1016/j.jaca.2023.100005","DOIUrl":null,"url":null,"abstract":"<div><p>Suppose that a finite solvable permutation group <em>G</em> acts faithfully and primitively on a finite set Ω. Let <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> be the stabilizer of a point <span><math><mi>α</mi><mo>∈</mo><mi>Ω</mi></math></span> and the rank of <em>G</em> be the number of distinct orbits of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> in Ω (including the trivial orbit <span><math><mo>{</mo><mi>α</mi><mo>}</mo></math></span>). Then <em>G</em> always has rank greater than four except for in a few cases. We completely classify these cases in this paper.</p></div>","PeriodicalId":100767,"journal":{"name":"Journal of Computational Algebra","volume":"5 ","pages":"Article 100005"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Algebra","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772827723000025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Suppose that a finite solvable permutation group G acts faithfully and primitively on a finite set Ω. Let be the stabilizer of a point and the rank of G be the number of distinct orbits of in Ω (including the trivial orbit ). Then G always has rank greater than four except for in a few cases. We completely classify these cases in this paper.