Gulf of Mexico larval dispersal: Combining concurrent sampling, behavioral, and hydrodynamic data to inform end-to-end modeling efforts through a Lagrangian dispersal model
Kelly Vasbinder , Cameron H. Ainsworth, Yonggang Liu, Robert H. Weisberg
{"title":"Gulf of Mexico larval dispersal: Combining concurrent sampling, behavioral, and hydrodynamic data to inform end-to-end modeling efforts through a Lagrangian dispersal model","authors":"Kelly Vasbinder , Cameron H. Ainsworth, Yonggang Liu, Robert H. Weisberg","doi":"10.1016/j.dsr2.2023.105323","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>We developed a Lagrangian larval dispersal model to estimate trajectories for eleven fish taxa inhabiting the Gulf of Mexico (GOM). Dispersal models are at family level resolution for </span>Scaridae<span>, Lutjanidae<span>, Scombridae<span>, Labridae, Ophichthidae, and Ophidiidae, at genus level resolution for </span></span></span></span><em>Hemanthias</em>, and at species level resolution for <span><span><em>Trachurus</em><span><em> lathami, </em><em>Decapterus</em><em> punctatus, </em></span></span><em>Katsuwonus pelamis</em><em>,</em></span> and <span><em>Euthynnus</em><em> alleteratus.</em></span><span> Hydrodynamics are provided by the West Florida Coastal Ocean Model (WFCOM). Larval samples are from the spring and fall SEAMAP ichthyoplankton<span> surveys from 2007 to 2011. The Lagrangian model was run backwards/forwards in time from the sampling event to estimate spawning/settlement locations. Results were used to update larval dispersal dynamics in the GOM Atlantis ‘end-to-end’ ecosystem model for twelve functional groups. We compare dispersal and non-dispersal scenarios in the Gulf of Mexico Atlantis model and find differences in stock abundance and distribution of fish. This highlights that the abundance and distribution of fishery resources are sensitive to changing circulation patterns. This work takes an interdisciplinary approach to understanding larval dynamics and their impacts on ecosystems at the intersection of predictive statistical modeling, hydrodynamic modeling, and ecosystem modeling.</span></span></p></div>","PeriodicalId":11120,"journal":{"name":"Deep-sea Research Part Ii-topical Studies in Oceanography","volume":"211 ","pages":"Article 105323"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep-sea Research Part Ii-topical Studies in Oceanography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967064523000735","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
We developed a Lagrangian larval dispersal model to estimate trajectories for eleven fish taxa inhabiting the Gulf of Mexico (GOM). Dispersal models are at family level resolution for Scaridae, Lutjanidae, Scombridae, Labridae, Ophichthidae, and Ophidiidae, at genus level resolution for Hemanthias, and at species level resolution for Trachurus lathami, Decapterus punctatus, Katsuwonus pelamis, and Euthynnus alleteratus. Hydrodynamics are provided by the West Florida Coastal Ocean Model (WFCOM). Larval samples are from the spring and fall SEAMAP ichthyoplankton surveys from 2007 to 2011. The Lagrangian model was run backwards/forwards in time from the sampling event to estimate spawning/settlement locations. Results were used to update larval dispersal dynamics in the GOM Atlantis ‘end-to-end’ ecosystem model for twelve functional groups. We compare dispersal and non-dispersal scenarios in the Gulf of Mexico Atlantis model and find differences in stock abundance and distribution of fish. This highlights that the abundance and distribution of fishery resources are sensitive to changing circulation patterns. This work takes an interdisciplinary approach to understanding larval dynamics and their impacts on ecosystems at the intersection of predictive statistical modeling, hydrodynamic modeling, and ecosystem modeling.
期刊介绍:
Deep-Sea Research Part II: Topical Studies in Oceanography publishes topical issues from the many international and interdisciplinary projects which are undertaken in oceanography. Besides these special issues from projects, the journal publishes collections of papers presented at conferences. The special issues regularly have electronic annexes of non-text material (numerical data, images, images, video, etc.) which are published with the special issues in ScienceDirect. Deep-Sea Research Part II was split off as a separate journal devoted to topical issues in 1993. Its companion journal Deep-Sea Research Part I: Oceanographic Research Papers, publishes the regular research papers in this area.