{"title":"Tailor-made microstructures lead to high-performance robust PEO membrane for CO2 capture via green fabrication technique","authors":"Wei-Shi Sun, Ming-Jie Yin, Wen-Hai Zhang, Shuo Li, Naixin Wang, Quan-Fu An","doi":"10.1016/j.gee.2022.01.016","DOIUrl":null,"url":null,"abstract":"<div><p>Emerging excessive greenhouse gas emissions pose great threats to the ecosystem, which thus requires efficient CO<sub>2</sub> capture to mitigate the disastrous issue. In this report, large molecular size bisphenol A ethoxylate diacrylate (BPA) was employed to crosslink poly (ethylene glycol) methyl ether acrylate (PEGMEA) via the green and rapid UV polymerization strategy. The microstructure of such-prepared membrane could be conveniently tailored by tuning the ratio of the two prepolymers, aiming at obtaining the optimized microstructures with suitable mesh size and PEO sol content, which was approved by a novel low-field nuclear magnetic resonance technique. The optimum membrane overcomes the trade-off challenge: dense microstructures lower the gas permeability while loose microstructures lower high-pressure-resistance capacity, realizing a high CO<sub>2</sub> permeability of 1711 Barrer and 100-h long-term running stability under 15 atm. The proposed membrane fabrication approach, hence, opens a novel gate for developing high-performance robust membranes for CO<sub>2</sub> capture.</p></div>","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy & Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468025722000164","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 6
Abstract
Emerging excessive greenhouse gas emissions pose great threats to the ecosystem, which thus requires efficient CO2 capture to mitigate the disastrous issue. In this report, large molecular size bisphenol A ethoxylate diacrylate (BPA) was employed to crosslink poly (ethylene glycol) methyl ether acrylate (PEGMEA) via the green and rapid UV polymerization strategy. The microstructure of such-prepared membrane could be conveniently tailored by tuning the ratio of the two prepolymers, aiming at obtaining the optimized microstructures with suitable mesh size and PEO sol content, which was approved by a novel low-field nuclear magnetic resonance technique. The optimum membrane overcomes the trade-off challenge: dense microstructures lower the gas permeability while loose microstructures lower high-pressure-resistance capacity, realizing a high CO2 permeability of 1711 Barrer and 100-h long-term running stability under 15 atm. The proposed membrane fabrication approach, hence, opens a novel gate for developing high-performance robust membranes for CO2 capture.
期刊介绍:
Green Energy & Environment (GEE) is an internationally recognized journal that undergoes a rigorous peer-review process. It focuses on interdisciplinary research related to green energy and the environment, covering a wide range of topics including biofuel and bioenergy, energy storage and networks, catalysis for sustainable processes, and materials for energy and the environment. GEE has a broad scope and encourages the submission of original and innovative research in both fundamental and engineering fields. Additionally, GEE serves as a platform for discussions, summaries, reviews, and previews of the impact of green energy on the eco-environment.