Yangshuo Li , Huiyong Wang , Bing Chang , Yingying Guo , Zhiyong Li , Shamraiz Hussain Talib , Zhansheng Lu , Jianji Wang
{"title":"Intercalation assisted liquid phase production of disulfide zirconium nanosheets for efficient electrocatalytic dinitrogen reduction to ammonia","authors":"Yangshuo Li , Huiyong Wang , Bing Chang , Yingying Guo , Zhiyong Li , Shamraiz Hussain Talib , Zhansheng Lu , Jianji Wang","doi":"10.1016/j.gee.2022.01.009","DOIUrl":null,"url":null,"abstract":"<div><p>Disulfide zirconium (ZrS<sub>2</sub>) is a two-dimensional (2D) transition metal disulfide and has given rise to extensive attention because of its distinctive electronic structure and properties. However, mass production of high quality of ZrS<sub>2</sub> nanosheets to realize their practical application remains a challenge. Here, we have successfully exfoliated the bulk ZrS<sub>2</sub> powder with the thickness of micron into single and few-layer nanosheets through liquid-phase exfoliation in N-methylpyrrolidone (NMP) assisted via aliphatic amines as intercalators. It is found that the exfoliation yield is as high as 27.3%, which is the record value for the exfoliation of ZrS<sub>2</sub> nanosheets from bulk ZrS<sub>2</sub> powder, and 77.1% of ZrS<sub>2</sub> nanosheets are 2–3 layers. The molecular geometric size and aliphatic amine basicity have important impact on the exfoliation. Furthermore, the ZrS<sub>2</sub> nanosheets have been used as catalyst in the electrocatalytic dinitrogen reduction with the NH<sub>3</sub> yield of 57.75 μg h<sup>−1</sup> mg<sub>cat.</sub><sup>−1</sup>, which is twice that by ZrS<sub>2</sub> nanofibers reported in literature and three times that by the bulk ZrS<sub>2</sub> powder. Therefore, the liquid phase exfoliation strategy reported here has great potential in mass production of ZrS<sub>2</sub> nanosheets for high activity electrocatalysis.</p></div>","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy & Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468025722000097","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Disulfide zirconium (ZrS2) is a two-dimensional (2D) transition metal disulfide and has given rise to extensive attention because of its distinctive electronic structure and properties. However, mass production of high quality of ZrS2 nanosheets to realize their practical application remains a challenge. Here, we have successfully exfoliated the bulk ZrS2 powder with the thickness of micron into single and few-layer nanosheets through liquid-phase exfoliation in N-methylpyrrolidone (NMP) assisted via aliphatic amines as intercalators. It is found that the exfoliation yield is as high as 27.3%, which is the record value for the exfoliation of ZrS2 nanosheets from bulk ZrS2 powder, and 77.1% of ZrS2 nanosheets are 2–3 layers. The molecular geometric size and aliphatic amine basicity have important impact on the exfoliation. Furthermore, the ZrS2 nanosheets have been used as catalyst in the electrocatalytic dinitrogen reduction with the NH3 yield of 57.75 μg h−1 mgcat.−1, which is twice that by ZrS2 nanofibers reported in literature and three times that by the bulk ZrS2 powder. Therefore, the liquid phase exfoliation strategy reported here has great potential in mass production of ZrS2 nanosheets for high activity electrocatalysis.
期刊介绍:
Green Energy & Environment (GEE) is an internationally recognized journal that undergoes a rigorous peer-review process. It focuses on interdisciplinary research related to green energy and the environment, covering a wide range of topics including biofuel and bioenergy, energy storage and networks, catalysis for sustainable processes, and materials for energy and the environment. GEE has a broad scope and encourages the submission of original and innovative research in both fundamental and engineering fields. Additionally, GEE serves as a platform for discussions, summaries, reviews, and previews of the impact of green energy on the eco-environment.