An in-depth understanding of improvement strategies and corresponding characterizations towards Zn anode in aqueous Zn-ions batteries

IF 10.7 1区 工程技术 Q1 CHEMISTRY, PHYSICAL
Yuzhu Chu , Lingxiao Ren , Zhenglin Hu , Chengde Huang , Jiayan Luo
{"title":"An in-depth understanding of improvement strategies and corresponding characterizations towards Zn anode in aqueous Zn-ions batteries","authors":"Yuzhu Chu ,&nbsp;Lingxiao Ren ,&nbsp;Zhenglin Hu ,&nbsp;Chengde Huang ,&nbsp;Jiayan Luo","doi":"10.1016/j.gee.2022.04.008","DOIUrl":null,"url":null,"abstract":"<div><p>Combining the unique advantages of aqueous electrolytes and metallic Zn anode, rechargeable aqueous Zn-ion batteries (ZIBs) are of great promise for large-scale energy storage applications due to their inherent high safety, low cost, and environmental friendliness. As the essential component of ZIBs, Zn metal anode suffers from severe dendrite formation and inevitable side reactions (e.g. corrosion and hydrogen evolution) in aqueous electrolytes, which leads to low Coulombic efficiency and inferior cycling stability, impeding their large-scale applications. To be compatible with satisfactory aqueous ZIBs, Zn anode has been modified from various perspectives and focus areas. Herein, based on their intrinsic characteristics, we review the related improvement strategies for Zn anode, including interphase, substrate, and bulk design, so as to achieve an in-depth understanding of Zn anode optimization. Furthermore, the timely summary of characterization methods for Zn anodes are also performed for the first time, from both thermodynamic and kinetics perspectives, which is particularly helpful for beginners to understand the complicated characterizations and employ suitable methods. Finally, certain noteworthy points are put forward for subsequent investigation of aqueous ZIBs. It is expected that this review will enlighten researchers to explore more efficient optimization strategies for Zn anode in aqueous electrolytes.</p></div>","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy & Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468025722000759","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 9

Abstract

Combining the unique advantages of aqueous electrolytes and metallic Zn anode, rechargeable aqueous Zn-ion batteries (ZIBs) are of great promise for large-scale energy storage applications due to their inherent high safety, low cost, and environmental friendliness. As the essential component of ZIBs, Zn metal anode suffers from severe dendrite formation and inevitable side reactions (e.g. corrosion and hydrogen evolution) in aqueous electrolytes, which leads to low Coulombic efficiency and inferior cycling stability, impeding their large-scale applications. To be compatible with satisfactory aqueous ZIBs, Zn anode has been modified from various perspectives and focus areas. Herein, based on their intrinsic characteristics, we review the related improvement strategies for Zn anode, including interphase, substrate, and bulk design, so as to achieve an in-depth understanding of Zn anode optimization. Furthermore, the timely summary of characterization methods for Zn anodes are also performed for the first time, from both thermodynamic and kinetics perspectives, which is particularly helpful for beginners to understand the complicated characterizations and employ suitable methods. Finally, certain noteworthy points are put forward for subsequent investigation of aqueous ZIBs. It is expected that this review will enlighten researchers to explore more efficient optimization strategies for Zn anode in aqueous electrolytes.

Abstract Image

深入了解水性锌离子电池中锌阳极的改进策略和相应特性
可充电水性锌离子电池(ZIBs)结合了水性电解质和金属锌阳极的独特优势,由于其固有的高安全性、低成本和环境友好性,在大规模储能应用中具有很大的前景。锌金属阳极作为ZIBs的重要组成部分,在水性电解质中存在严重的枝晶形成和不可避免的副反应(如腐蚀和析氢),导致库仑效率低和循环稳定性差,阻碍了其大规模应用。为了与令人满意的水性ZIBs相容,锌阳极从不同的角度和重点领域进行了改性。在此,基于它们的内在特性,我们回顾了锌阳极的相关改进策略,包括界面、衬底和本体设计,以深入了解锌阳极的优化。此外,还首次从热力学和动力学角度对锌阳极的表征方法进行了及时总结,这对初学者理解复杂的表征并采用合适的方法特别有帮助。最后,对水性ZIBs的后续研究提出了一些值得注意的地方。预计这篇综述将启发研究人员探索在水性电解质中更有效的锌阳极优化策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Green Energy & Environment
Green Energy & Environment Energy-Renewable Energy, Sustainability and the Environment
CiteScore
16.80
自引率
3.80%
发文量
332
审稿时长
12 days
期刊介绍: Green Energy & Environment (GEE) is an internationally recognized journal that undergoes a rigorous peer-review process. It focuses on interdisciplinary research related to green energy and the environment, covering a wide range of topics including biofuel and bioenergy, energy storage and networks, catalysis for sustainable processes, and materials for energy and the environment. GEE has a broad scope and encourages the submission of original and innovative research in both fundamental and engineering fields. Additionally, GEE serves as a platform for discussions, summaries, reviews, and previews of the impact of green energy on the eco-environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信