On singular values of large dimensional lag-τ sample auto-correlation matrices

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhanting Long , Zeng Li , Ruitao Lin , Jiaxin Qiu
{"title":"On singular values of large dimensional lag-τ sample auto-correlation matrices","authors":"Zhanting Long ,&nbsp;Zeng Li ,&nbsp;Ruitao Lin ,&nbsp;Jiaxin Qiu","doi":"10.1016/j.jmva.2023.105205","DOIUrl":null,"url":null,"abstract":"<div><p><span>We study the limiting behavior of singular values of a lag-</span><span><math><mi>τ</mi></math></span> sample auto-correlation matrix <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>τ</mi></mrow><mrow><mi>ϵ</mi></mrow></msubsup></math></span><span> of large dimensional vector white noise process, the error term </span><span><math><mi>ϵ</mi></math></span><span> in the high-dimensional factor model. We establish the limiting spectral distribution (LSD) that characterizes the global spectrum of </span><span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>τ</mi></mrow><mrow><mi>ϵ</mi></mrow></msubsup></math></span>, and derive the limit of its largest singular value. All the asymptotic results are derived under the high-dimensional asymptotic regime where the data dimension and sample size go to infinity proportionally. Under mild assumptions, we show that the LSD of <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>τ</mi></mrow><mrow><mi>ϵ</mi></mrow></msubsup></math></span> is the same as that of the lag-<span><math><mi>τ</mi></math></span><span> sample auto-covariance matrix. Based on this asymptotic equivalence, we additionally show that the largest singular value of </span><span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>τ</mi></mrow><mrow><mi>ϵ</mi></mrow></msubsup></math></span> converges almost surely to the right end point of the support of its LSD. Based on these results, we further propose two estimators of total number of factors with lag-<span><math><mi>τ</mi></math></span> sample auto-correlation matrices in a factor model. Our theoretical results are fully supported by numerical experiments as well.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X23000519","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We study the limiting behavior of singular values of a lag-τ sample auto-correlation matrix Rτϵ of large dimensional vector white noise process, the error term ϵ in the high-dimensional factor model. We establish the limiting spectral distribution (LSD) that characterizes the global spectrum of Rτϵ, and derive the limit of its largest singular value. All the asymptotic results are derived under the high-dimensional asymptotic regime where the data dimension and sample size go to infinity proportionally. Under mild assumptions, we show that the LSD of Rτϵ is the same as that of the lag-τ sample auto-covariance matrix. Based on this asymptotic equivalence, we additionally show that the largest singular value of Rτϵ converges almost surely to the right end point of the support of its LSD. Based on these results, we further propose two estimators of total number of factors with lag-τ sample auto-correlation matrices in a factor model. Our theoretical results are fully supported by numerical experiments as well.

关于大维滞后τ样本自相关矩阵的奇异值
我们研究了大维向量白噪声过程的滞后-τ样本自相关矩阵Rτ的奇异值的极限行为,即高维因子模型中的误差项。我们建立了表征R的全局谱的极限谱分布(LSD),并导出了其最大奇异值的极限。所有的渐近结果都是在高维渐近条件下得到的,其中数据维度和样本大小成比例地变为无穷大。在温和的假设下,我们证明了Rτõ的LSD与滞后-τ样本自协方差矩阵的LSD相同。基于这种渐近等价,我们还证明了Rτõ的最大奇异值几乎肯定收敛到其LSD的支持的右端点。基于这些结果,我们进一步提出了因子模型中具有滞后-τ样本自相关矩阵的因子总数的两个估计量。我们的理论结果也得到了数值实验的充分支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信