{"title":"On singular values of large dimensional lag-τ sample auto-correlation matrices","authors":"Zhanting Long , Zeng Li , Ruitao Lin , Jiaxin Qiu","doi":"10.1016/j.jmva.2023.105205","DOIUrl":null,"url":null,"abstract":"<div><p><span>We study the limiting behavior of singular values of a lag-</span><span><math><mi>τ</mi></math></span> sample auto-correlation matrix <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>τ</mi></mrow><mrow><mi>ϵ</mi></mrow></msubsup></math></span><span> of large dimensional vector white noise process, the error term </span><span><math><mi>ϵ</mi></math></span><span> in the high-dimensional factor model. We establish the limiting spectral distribution (LSD) that characterizes the global spectrum of </span><span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>τ</mi></mrow><mrow><mi>ϵ</mi></mrow></msubsup></math></span>, and derive the limit of its largest singular value. All the asymptotic results are derived under the high-dimensional asymptotic regime where the data dimension and sample size go to infinity proportionally. Under mild assumptions, we show that the LSD of <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>τ</mi></mrow><mrow><mi>ϵ</mi></mrow></msubsup></math></span> is the same as that of the lag-<span><math><mi>τ</mi></math></span><span> sample auto-covariance matrix. Based on this asymptotic equivalence, we additionally show that the largest singular value of </span><span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>τ</mi></mrow><mrow><mi>ϵ</mi></mrow></msubsup></math></span> converges almost surely to the right end point of the support of its LSD. Based on these results, we further propose two estimators of total number of factors with lag-<span><math><mi>τ</mi></math></span> sample auto-correlation matrices in a factor model. Our theoretical results are fully supported by numerical experiments as well.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X23000519","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We study the limiting behavior of singular values of a lag- sample auto-correlation matrix of large dimensional vector white noise process, the error term in the high-dimensional factor model. We establish the limiting spectral distribution (LSD) that characterizes the global spectrum of , and derive the limit of its largest singular value. All the asymptotic results are derived under the high-dimensional asymptotic regime where the data dimension and sample size go to infinity proportionally. Under mild assumptions, we show that the LSD of is the same as that of the lag- sample auto-covariance matrix. Based on this asymptotic equivalence, we additionally show that the largest singular value of converges almost surely to the right end point of the support of its LSD. Based on these results, we further propose two estimators of total number of factors with lag- sample auto-correlation matrices in a factor model. Our theoretical results are fully supported by numerical experiments as well.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.