Dennis Alexander Tebbe, Charlotte Gruender, Leon Dlugosch, Kertu Lõhmus, Sönke Rolfes, Martin Könneke, Yin Chen, Bert Engelen, Hendrik Schäfer
{"title":"Microbial drivers of DMSO reduction and DMS-dependent methanogenesis in saltmarsh sediments","authors":"Dennis Alexander Tebbe, Charlotte Gruender, Leon Dlugosch, Kertu Lõhmus, Sönke Rolfes, Martin Könneke, Yin Chen, Bert Engelen, Hendrik Schäfer","doi":"10.1038/s41396-023-01539-1","DOIUrl":null,"url":null,"abstract":"Saltmarshes are highly productive environments, exhibiting high abundances of organosulfur compounds. Dimethylsulfoniopropionate (DMSP) is produced in large quantities by algae, plants, and bacteria and is a potential precursor for dimethylsulfoxide (DMSO) and dimethylsulfide (DMS). DMSO serves as electron acceptor for anaerobic respiration leading to DMS formation, which is either emitted or can be degraded by methylotrophic prokaryotes. Major products of these reactions are trace gases with positive (CO2, CH4) or negative (DMS) radiative forcing with contrasting effects on the global climate. Here, we investigated organic sulfur cycling in saltmarsh sediments and followed DMSO reduction in anoxic batch experiments. Compared to previous measurements from marine waters, DMSO concentrations in the saltmarsh sediments were up to ~300 fold higher. In batch experiments, DMSO was reduced to DMS and subsequently consumed with concomitant CH4 production. Changes in prokaryotic communities and DMSO reductase gene counts indicated a dominance of organisms containing the Dms-type DMSO reductases (e.g., Desulfobulbales, Enterobacterales). In contrast, when sulfate reduction was inhibited by molybdate, Tor-type DMSO reductases (e.g., Rhodobacterales) increased. Vibrionales increased in relative abundance in both treatments, and metagenome assembled genomes (MAGs) affiliated to Vibrio had all genes encoding the subunits of DMSO reductases. Molar conversion ratios of <1.3 CH4 per added DMSO were accompanied by a predominance of the methylotrophic methanogens Methanosarcinales. Enrichment of mtsDH genes, encoding for DMS methyl transferases in metagenomes of batch incubations indicate their role in DMS-dependent methanogenesis. MAGs affiliated to Methanolobus carried the complete set of genes encoding for the enzymes in methylotrophic methanogenesis.","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":"17 12","pages":"2340-2351"},"PeriodicalIF":10.8000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10689795/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME Journal","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s41396-023-01539-1","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Saltmarshes are highly productive environments, exhibiting high abundances of organosulfur compounds. Dimethylsulfoniopropionate (DMSP) is produced in large quantities by algae, plants, and bacteria and is a potential precursor for dimethylsulfoxide (DMSO) and dimethylsulfide (DMS). DMSO serves as electron acceptor for anaerobic respiration leading to DMS formation, which is either emitted or can be degraded by methylotrophic prokaryotes. Major products of these reactions are trace gases with positive (CO2, CH4) or negative (DMS) radiative forcing with contrasting effects on the global climate. Here, we investigated organic sulfur cycling in saltmarsh sediments and followed DMSO reduction in anoxic batch experiments. Compared to previous measurements from marine waters, DMSO concentrations in the saltmarsh sediments were up to ~300 fold higher. In batch experiments, DMSO was reduced to DMS and subsequently consumed with concomitant CH4 production. Changes in prokaryotic communities and DMSO reductase gene counts indicated a dominance of organisms containing the Dms-type DMSO reductases (e.g., Desulfobulbales, Enterobacterales). In contrast, when sulfate reduction was inhibited by molybdate, Tor-type DMSO reductases (e.g., Rhodobacterales) increased. Vibrionales increased in relative abundance in both treatments, and metagenome assembled genomes (MAGs) affiliated to Vibrio had all genes encoding the subunits of DMSO reductases. Molar conversion ratios of <1.3 CH4 per added DMSO were accompanied by a predominance of the methylotrophic methanogens Methanosarcinales. Enrichment of mtsDH genes, encoding for DMS methyl transferases in metagenomes of batch incubations indicate their role in DMS-dependent methanogenesis. MAGs affiliated to Methanolobus carried the complete set of genes encoding for the enzymes in methylotrophic methanogenesis.
期刊介绍:
The ISME Journal covers the diverse and integrated areas of microbial ecology. We encourage contributions that represent major advances for the study of microbial ecosystems, communities, and interactions of microorganisms in the environment. Articles in The ISME Journal describe pioneering discoveries of wide appeal that enhance our understanding of functional and mechanistic relationships among microorganisms, their communities, and their habitats.