{"title":"RGS10 inhibits proliferation and migration of pulmonary arterial smooth muscle cell in pulmonary hypertension via AKT/mTORC1 signaling.","authors":"Sheng Hu, Yijie Zhang, Chenming Qiu, Ying Li","doi":"10.1080/10641963.2023.2271186","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> Excessive proliferation and migration of pulmonary arterial smooth muscle cell (PASMC) is a core event of pulmonary hypertension (PH). Regulators of G protein signaling 10 (RGS10) can regulate cellular proliferation and cardiopulmonary diseases. We demonstrate whether RGS10 also serves as a regulator of PH.<b>Methods:</b> PASMC was challenged by hypoxia to induce proliferation and migration. Adenovirus carrying Rgs10 gene (Ad-Rgs10) was used for external expression of Rgs10. Hypoxia/SU5416 or MCT was used to induce PH. Right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index (RVHI) were used to validate the establishment of PH model.<b>Results:</b> RGS10 was downregulated in hypoxia-challenged PASMC. Ad-Rgs10 significantly suppressed proliferation and migration of PASMC after hypoxia stimulus, while silencing RGS10 showed contrary effect. Mechanistically, we observed that phosphorylation of S6 and 4E-Binding Protein 1 (4EBP1), the main downstream effectors of mammalian target of rapamycin complex 1 (mTORC1) as well as phosphorylation of AKT, the canonical upstream of mTORC1 in hypoxia-induced PASMC were negatively modulated by RGS10. Both recovering mTORC1 activity and restoring AKT activity abolished these effects of RGS10 on PASMC. More importantly, AKT activation also abolished the inhibitory role of RGS10 in mTORC1 activity in hypoxia-challenged PASMC. Finally, we also observed that overexpression of RGS10 in vivo ameliorated pulmonary vascular wall thickening and reducing RVSP and RVHI in mouse PH model.<b>Conclusion:</b> Our findings reveal the modulatory role of RGS10 in PASMC and PH via AKT/mTORC1 axis. Therefore, targeting RGS10 may serve as a novel potent method for the prevention against PH.\"</p>","PeriodicalId":10333,"journal":{"name":"Clinical and Experimental Hypertension","volume":"45 1","pages":"2271186"},"PeriodicalIF":1.5000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Hypertension","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10641963.2023.2271186","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Excessive proliferation and migration of pulmonary arterial smooth muscle cell (PASMC) is a core event of pulmonary hypertension (PH). Regulators of G protein signaling 10 (RGS10) can regulate cellular proliferation and cardiopulmonary diseases. We demonstrate whether RGS10 also serves as a regulator of PH.Methods: PASMC was challenged by hypoxia to induce proliferation and migration. Adenovirus carrying Rgs10 gene (Ad-Rgs10) was used for external expression of Rgs10. Hypoxia/SU5416 or MCT was used to induce PH. Right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index (RVHI) were used to validate the establishment of PH model.Results: RGS10 was downregulated in hypoxia-challenged PASMC. Ad-Rgs10 significantly suppressed proliferation and migration of PASMC after hypoxia stimulus, while silencing RGS10 showed contrary effect. Mechanistically, we observed that phosphorylation of S6 and 4E-Binding Protein 1 (4EBP1), the main downstream effectors of mammalian target of rapamycin complex 1 (mTORC1) as well as phosphorylation of AKT, the canonical upstream of mTORC1 in hypoxia-induced PASMC were negatively modulated by RGS10. Both recovering mTORC1 activity and restoring AKT activity abolished these effects of RGS10 on PASMC. More importantly, AKT activation also abolished the inhibitory role of RGS10 in mTORC1 activity in hypoxia-challenged PASMC. Finally, we also observed that overexpression of RGS10 in vivo ameliorated pulmonary vascular wall thickening and reducing RVSP and RVHI in mouse PH model.Conclusion: Our findings reveal the modulatory role of RGS10 in PASMC and PH via AKT/mTORC1 axis. Therefore, targeting RGS10 may serve as a novel potent method for the prevention against PH."
期刊介绍:
Clinical and Experimental Hypertension is a reputable journal that has converted to a full Open Access format starting from Volume 45 in 2023. While previous volumes are still accessible through a Pay to Read model, the journal now provides free and open access to its content. It serves as an international platform for the exchange of up-to-date scientific and clinical information concerning both human and animal hypertension. The journal publishes a wide range of articles, including full research papers, solicited and unsolicited reviews, and commentaries. Through these publications, the journal aims to enhance current understanding and support the timely detection, management, control, and prevention of hypertension-related conditions.
One notable aspect of Clinical and Experimental Hypertension is its coverage of special issues that focus on the proceedings of symposia dedicated to hypertension research. This feature allows researchers and clinicians to delve deeper into the latest advancements in this field.
The journal is abstracted and indexed in several renowned databases, including Pharmacoeconomics and Outcomes News (Online), Reactions Weekly (Online), CABI, EBSCOhost, Elsevier BV, International Atomic Energy Agency, and the National Library of Medicine, among others. These affiliations ensure that the journal's content receives broad visibility and facilitates its discoverability by professionals and researchers in related disciplines.