Atomic Cu Sites Engineering Enables Efficient CO2 Electroreduction to Methane with High CH4/C2H4 Ratio

IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Minhan Li, Fangzhou Zhang, Min Kuang, Yuanyuan Ma, Ting Liao, Ziqi Sun, Wei Luo, Wan Jiang, Jianping Yang
{"title":"Atomic Cu Sites Engineering Enables Efficient CO2 Electroreduction to Methane with High CH4/C2H4 Ratio","authors":"Minhan Li,&nbsp;Fangzhou Zhang,&nbsp;Min Kuang,&nbsp;Yuanyuan Ma,&nbsp;Ting Liao,&nbsp;Ziqi Sun,&nbsp;Wei Luo,&nbsp;Wan Jiang,&nbsp;Jianping Yang","doi":"10.1007/s40820-023-01188-1","DOIUrl":null,"url":null,"abstract":"<div><p>Electrochemical reduction of CO<sub>2</sub> into high-value hydrocarbons and alcohols by using Cu-based catalysts is a promising and attractive technology for CO<sub>2</sub> capture and utilization, resulting from their high catalytic activity and selectivity. The mobility and accessibility of active sites in Cu-based catalysts significantly hinder the development of efficient Cu-based catalysts for CO<sub>2</sub> electrochemical reduction reaction (CO<sub>2</sub>RR). Herein, a facile and effective strategy is developed to engineer accessible and structural stable Cu sites by incorporating single atomic Cu into the nitrogen cavities of the host graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) as the active sites for CO<sub>2</sub>-to-CH<sub>4</sub> conversion in CO<sub>2</sub>RR. By regulating the coordination and density of Cu sites in g-C<sub>3</sub>N<sub>4</sub>, an optimal catalyst corresponding to a one Cu atom in one nitrogen cavity reaches the highest CH<sub>4</sub> Faraday efficiency of 49.04% and produces the products with a high CH<sub>4</sub>/C<sub>2</sub>H<sub>4</sub> ratio over 9. This work provides the first experimental study on g-C<sub>3</sub>N<sub>4</sub>-supported single Cu atom catalyst for efficient CH<sub>4</sub> production from CO<sub>2</sub>RR and suggests a principle in designing highly stable and selective high-efficiency Cu-based catalysts for CO<sub>2</sub>RR by engineering Cu active sites in 2D materials with porous crystal structures.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":31.6000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10603021/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-023-01188-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical reduction of CO2 into high-value hydrocarbons and alcohols by using Cu-based catalysts is a promising and attractive technology for CO2 capture and utilization, resulting from their high catalytic activity and selectivity. The mobility and accessibility of active sites in Cu-based catalysts significantly hinder the development of efficient Cu-based catalysts for CO2 electrochemical reduction reaction (CO2RR). Herein, a facile and effective strategy is developed to engineer accessible and structural stable Cu sites by incorporating single atomic Cu into the nitrogen cavities of the host graphitic carbon nitride (g-C3N4) as the active sites for CO2-to-CH4 conversion in CO2RR. By regulating the coordination and density of Cu sites in g-C3N4, an optimal catalyst corresponding to a one Cu atom in one nitrogen cavity reaches the highest CH4 Faraday efficiency of 49.04% and produces the products with a high CH4/C2H4 ratio over 9. This work provides the first experimental study on g-C3N4-supported single Cu atom catalyst for efficient CH4 production from CO2RR and suggests a principle in designing highly stable and selective high-efficiency Cu-based catalysts for CO2RR by engineering Cu active sites in 2D materials with porous crystal structures.

Abstract Image

Abstract Image

Abstract Image

原子铜位工程实现了高CH4/C2H4比率的高效CO2电还原为甲烷。
使用铜基催化剂将CO2电化学还原为高价值的碳氢化合物和醇类是一种很有前途和吸引力的CO2捕获和利用技术,因为它们具有很高的催化活性和选择性。铜基催化剂中活性位点的移动性和可及性严重阻碍了用于CO2电化学还原反应(CO2RR)的高效铜基催化剂的开发。本文开发了一种简单有效的策略,通过将单原子Cu掺入主体石墨氮化碳(g-C3N4)的氮腔中,作为CO2RR中CO2转化为CH4的活性位点,来设计可获得的和结构稳定的Cu位点。通过调节g-C3N4中Cu位点的配位和密度,对应于一个氮腔中一个Cu原子的最佳催化剂达到了49.04%的最高CH4法拉第效率,并产生了CH4/C2H4比超过9的产物。本工作首次对g-C3N4负载的单铜原子催化剂进行了实验研究,用于从CO2RR中高效生产CH4,并提出了通过在具有多孔晶体结构的2D材料中设计Cu活性位点来设计高稳定性和选择性的高效铜基CO2RR催化剂的原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
42.40
自引率
4.90%
发文量
715
审稿时长
13 weeks
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary and open-access journal that focus on science, experiments, engineering, technologies and applications of nano- or microscale structure and system in physics, chemistry, biology, material science, pharmacy and their expanding interfaces with at least one dimension ranging from a few sub-nanometers to a few hundreds of micrometers. Especially, emphasize the bottom-up approach in the length scale from nano to micro since the key for nanotechnology to reach industrial applications is to assemble, to modify, and to control nanostructure in micro scale. The aim is to provide a publishing platform crossing the boundaries, from nano to micro, and from science to technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信