MicroRNA-specific therapeutic targets and biomarkers of apoptosis following myocardial ischemia-reperfusion injury.

IF 3.5 2区 生物学 Q3 CELL BIOLOGY
Molecular and Cellular Biochemistry Pub Date : 2024-10-01 Epub Date: 2023-10-25 DOI:10.1007/s11010-023-04876-z
Teng Ge, Bo Ning, Yongqing Wu, Xiaolin Chen, Hongfei Qi, Haifang Wang, Mingjun Zhao
{"title":"MicroRNA-specific therapeutic targets and biomarkers of apoptosis following myocardial ischemia-reperfusion injury.","authors":"Teng Ge, Bo Ning, Yongqing Wu, Xiaolin Chen, Hongfei Qi, Haifang Wang, Mingjun Zhao","doi":"10.1007/s11010-023-04876-z","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs are single-stranded non-coding RNAs that participate in post-transcriptional regulation of gene expression, it is involved in the regulation of apoptosis after myocardial ischemia-reperfusion injury. For example, the alteration of mitochondrial structure is facilitated by MicroRNA-1 through the regulation of apoptosis-related proteins, such as Bax and Bcl-2, thereby mitigating cardiomyocyte apoptosis. MicroRNA-21 not only modulates the expression of NF-κB to suppress inflammatory signals but also activates the PI3K/AKT pathway to mitigate ischemia-reperfusion injury. Overexpression of MicroRNA-133 attenuates reactive oxygen species (ROS) production and suppressed the oxidative stress response, thereby mitigating cellular apoptosis. MicroRNA-139 modulates the extrinsic death signal of Fas, while MicroRNA-145 regulates endoplasmic reticulum calcium overload, both of which exert regulatory effects on cardiomyocyte apoptosis. Therefore, the article categorizes the molecular mechanisms based on the three classical pathways and multiple signaling pathways of apoptosis. It summarizes the targets and pathways of MicroRNA therapy for ischemia-reperfusion injury and analyzes future research directions.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"2499-2521"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-023-04876-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

MicroRNAs are single-stranded non-coding RNAs that participate in post-transcriptional regulation of gene expression, it is involved in the regulation of apoptosis after myocardial ischemia-reperfusion injury. For example, the alteration of mitochondrial structure is facilitated by MicroRNA-1 through the regulation of apoptosis-related proteins, such as Bax and Bcl-2, thereby mitigating cardiomyocyte apoptosis. MicroRNA-21 not only modulates the expression of NF-κB to suppress inflammatory signals but also activates the PI3K/AKT pathway to mitigate ischemia-reperfusion injury. Overexpression of MicroRNA-133 attenuates reactive oxygen species (ROS) production and suppressed the oxidative stress response, thereby mitigating cellular apoptosis. MicroRNA-139 modulates the extrinsic death signal of Fas, while MicroRNA-145 regulates endoplasmic reticulum calcium overload, both of which exert regulatory effects on cardiomyocyte apoptosis. Therefore, the article categorizes the molecular mechanisms based on the three classical pathways and multiple signaling pathways of apoptosis. It summarizes the targets and pathways of MicroRNA therapy for ischemia-reperfusion injury and analyzes future research directions.

Abstract Image

心肌缺血再灌注损伤后细胞凋亡的microrna特异性治疗靶点和生物标志物。
微小RNA是一种单链非编码RNA,参与基因表达的转录后调控,参与心肌缺血再灌注损伤后细胞凋亡的调控。例如,MicroRNA-1通过调节凋亡相关蛋白,如Bax和Bcl-2,促进线粒体结构的改变,从而减轻心肌细胞凋亡。MicroRNA-21不仅调节NF-κB的表达以抑制炎症信号,还激活PI3K/AKT通路以减轻缺血再灌注损伤。MicroRNA-133的过表达减弱了活性氧(ROS)的产生并抑制了氧化应激反应,从而减轻了细胞凋亡。MicroRNA-139调节Fas的外源性死亡信号,而MicroRNA-145调节内质网钙超载,两者都对心肌细胞凋亡具有调节作用。因此,本文根据细胞凋亡的三种经典途径和多种信号通路对其分子机制进行了分类。综述了MicroRNA治疗缺血再灌注损伤的靶点和途径,并分析了未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular and Cellular Biochemistry
Molecular and Cellular Biochemistry 生物-细胞生物学
CiteScore
8.30
自引率
2.30%
发文量
293
审稿时长
1.7 months
期刊介绍: Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell. In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信