Jan Pawel Jastrzebski, Stefano Pascarella, Aleksandra Lipka, Slawomir Dorocki
{"title":"IncRna: The R Package for Optimizing lncRNA Identification Processes.","authors":"Jan Pawel Jastrzebski, Stefano Pascarella, Aleksandra Lipka, Slawomir Dorocki","doi":"10.1089/cmb.2023.0091","DOIUrl":null,"url":null,"abstract":"<p><p>In silico identification of long noncoding RNAs (lncRNAs) is a multistage process including filtering of transcripts according to their physical characteristics (e.g., length, exon-intron structure) and determination of the coding potential of the sequence. A common issue within this process is the choice of the most suitable method of coding potential analysis for the conducted research. Selection of tools on the sole basis of their single performance may not provide the most effective choice for a specific problem. To overcome these limitations, we developed the R library lncRna, which provides functions to easily carry out the entire lncRNA identification process. For example, the package prepares the data files for coding potential analysis to perform error analysis. Moreover, the package gives the opportunity to analyze the effectiveness of various combinations of the lncRNA prediction methods to select the optimal configuration of the entire process.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":"1322-1326"},"PeriodicalIF":1.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2023.0091","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/25 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In silico identification of long noncoding RNAs (lncRNAs) is a multistage process including filtering of transcripts according to their physical characteristics (e.g., length, exon-intron structure) and determination of the coding potential of the sequence. A common issue within this process is the choice of the most suitable method of coding potential analysis for the conducted research. Selection of tools on the sole basis of their single performance may not provide the most effective choice for a specific problem. To overcome these limitations, we developed the R library lncRna, which provides functions to easily carry out the entire lncRNA identification process. For example, the package prepares the data files for coding potential analysis to perform error analysis. Moreover, the package gives the opportunity to analyze the effectiveness of various combinations of the lncRNA prediction methods to select the optimal configuration of the entire process.
期刊介绍:
Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics.
Journal of Computational Biology coverage includes:
-Genomics
-Mathematical modeling and simulation
-Distributed and parallel biological computing
-Designing biological databases
-Pattern matching and pattern detection
-Linking disparate databases and data
-New tools for computational biology
-Relational and object-oriented database technology for bioinformatics
-Biological expert system design and use
-Reasoning by analogy, hypothesis formation, and testing by machine
-Management of biological databases