Christian Staehr, Christian Aalkjaer, Vladimir V Matchkov
{"title":"The vascular Na,K-ATPase: clinical implications in stroke, migraine, and hypertension.","authors":"Christian Staehr, Christian Aalkjaer, Vladimir V Matchkov","doi":"10.1042/CS20220796","DOIUrl":null,"url":null,"abstract":"<p><p>In the vascular wall, the Na,K-ATPase plays an important role in the control of arterial tone. Through cSrc signaling, it contributes to the modulation of Ca2+ sensitivity in vascular smooth muscle cells. This review focuses on the potential implication of Na,K-ATPase-dependent intracellular signaling pathways in severe vascular disorders; ischemic stroke, familial migraine, and arterial hypertension. We propose similarity in the detrimental Na,K-ATPase-dependent signaling seen in these pathological conditions. The review includes a retrospective proteomics analysis investigating temporal changes after ischemic stroke. The analysis revealed that the expression of Na,K-ATPase α isoforms is down-regulated in the days and weeks following reperfusion, while downstream Na,K-ATPase-dependent cSrc kinase is up-regulated. These results are important since previous studies have linked the Na,K-ATPase-dependent cSrc signaling to futile recanalization and vasospasm after stroke. The review also explores a link between the Na,K-ATPase and migraine with aura, as reduced expression or pharmacological inhibition of the Na,K-ATPase leads to cSrc kinase signaling up-regulation and cerebral hypoperfusion. The review discusses the role of an endogenous cardiotonic steroid-like compound, ouabain, which binds to the Na,K-ATPase and initiates the intracellular cSrc signaling, in the pathophysiology of arterial hypertension. Currently, our understanding of the precise control mechanisms governing the Na,K-ATPase/cSrc kinase regulation in the vascular wall is limited. Understanding the role of vascular Na,K-ATPase signaling is essential for developing targeted treatments for cerebrovascular disorders and hypertension, as the Na,K-ATPase is implicated in the pathogenesis of these conditions and may contribute to their comorbidity.</p>","PeriodicalId":10475,"journal":{"name":"Clinical science","volume":"137 20","pages":"1595-1618"},"PeriodicalIF":6.7000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0e/eb/cs-137-cs20220796.PMC10600256.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1042/CS20220796","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 1
Abstract
In the vascular wall, the Na,K-ATPase plays an important role in the control of arterial tone. Through cSrc signaling, it contributes to the modulation of Ca2+ sensitivity in vascular smooth muscle cells. This review focuses on the potential implication of Na,K-ATPase-dependent intracellular signaling pathways in severe vascular disorders; ischemic stroke, familial migraine, and arterial hypertension. We propose similarity in the detrimental Na,K-ATPase-dependent signaling seen in these pathological conditions. The review includes a retrospective proteomics analysis investigating temporal changes after ischemic stroke. The analysis revealed that the expression of Na,K-ATPase α isoforms is down-regulated in the days and weeks following reperfusion, while downstream Na,K-ATPase-dependent cSrc kinase is up-regulated. These results are important since previous studies have linked the Na,K-ATPase-dependent cSrc signaling to futile recanalization and vasospasm after stroke. The review also explores a link between the Na,K-ATPase and migraine with aura, as reduced expression or pharmacological inhibition of the Na,K-ATPase leads to cSrc kinase signaling up-regulation and cerebral hypoperfusion. The review discusses the role of an endogenous cardiotonic steroid-like compound, ouabain, which binds to the Na,K-ATPase and initiates the intracellular cSrc signaling, in the pathophysiology of arterial hypertension. Currently, our understanding of the precise control mechanisms governing the Na,K-ATPase/cSrc kinase regulation in the vascular wall is limited. Understanding the role of vascular Na,K-ATPase signaling is essential for developing targeted treatments for cerebrovascular disorders and hypertension, as the Na,K-ATPase is implicated in the pathogenesis of these conditions and may contribute to their comorbidity.
期刊介绍:
Translating molecular bioscience and experimental research into medical insights, Clinical Science offers multi-disciplinary coverage and clinical perspectives to advance human health.
Its international Editorial Board is charged with selecting peer-reviewed original papers of the highest scientific merit covering the broad spectrum of biomedical specialities including, although not exclusively:
Cardiovascular system
Cerebrovascular system
Gastrointestinal tract and liver
Genomic medicine
Infection and immunity
Inflammation
Oncology
Metabolism
Endocrinology and nutrition
Nephrology
Circulation
Respiratory system
Vascular biology
Molecular pathology.