{"title":"Nanobubble-induced significant reduction of the interfacial thermal conductance for few-layer graphene","authors":"Zhao-Xia Qu and Jin-Wu Jiang","doi":"10.1039/D3CP04085B","DOIUrl":null,"url":null,"abstract":"<p >The heat transport properties of van der Waals layered structures are crucial for ensuring the reliability and longevity of high-performance optoelectronic equipment. Owing to the two-dimensional nature of atomic layers, the presence of bubbles is commonly observed within these structures. Nevertheless, the effect of bubbles on the interfacial thermal conductance remains unclear. Based on the elastic membrane theory and the improved van der Waals gas state equation, we develop an analytical formula to describe the influence of bubble shape on the interfacial thermal conductance. It shows that the presence of bubbles has a considerable impact on reducing the interfacial thermal conductance across graphene/graphene interfaces. More specifically, the presence of nanobubbles can result in a reduction of up to 53% in the interfacial thermal conductance. The validity of the analytical predictions is confirmed through molecular dynamic simulations. These results offer valuable insights into the thermal management of van der Waals layered structures in the application of next-generation electronic nanodevices.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 42","pages":" 28651-28656"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/cp/d3cp04085b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The heat transport properties of van der Waals layered structures are crucial for ensuring the reliability and longevity of high-performance optoelectronic equipment. Owing to the two-dimensional nature of atomic layers, the presence of bubbles is commonly observed within these structures. Nevertheless, the effect of bubbles on the interfacial thermal conductance remains unclear. Based on the elastic membrane theory and the improved van der Waals gas state equation, we develop an analytical formula to describe the influence of bubble shape on the interfacial thermal conductance. It shows that the presence of bubbles has a considerable impact on reducing the interfacial thermal conductance across graphene/graphene interfaces. More specifically, the presence of nanobubbles can result in a reduction of up to 53% in the interfacial thermal conductance. The validity of the analytical predictions is confirmed through molecular dynamic simulations. These results offer valuable insights into the thermal management of van der Waals layered structures in the application of next-generation electronic nanodevices.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.