Nanobubble-induced significant reduction of the interfacial thermal conductance for few-layer graphene

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Zhao-Xia Qu and Jin-Wu Jiang
{"title":"Nanobubble-induced significant reduction of the interfacial thermal conductance for few-layer graphene","authors":"Zhao-Xia Qu and Jin-Wu Jiang","doi":"10.1039/D3CP04085B","DOIUrl":null,"url":null,"abstract":"<p >The heat transport properties of van der Waals layered structures are crucial for ensuring the reliability and longevity of high-performance optoelectronic equipment. Owing to the two-dimensional nature of atomic layers, the presence of bubbles is commonly observed within these structures. Nevertheless, the effect of bubbles on the interfacial thermal conductance remains unclear. Based on the elastic membrane theory and the improved van der Waals gas state equation, we develop an analytical formula to describe the influence of bubble shape on the interfacial thermal conductance. It shows that the presence of bubbles has a considerable impact on reducing the interfacial thermal conductance across graphene/graphene interfaces. More specifically, the presence of nanobubbles can result in a reduction of up to 53% in the interfacial thermal conductance. The validity of the analytical predictions is confirmed through molecular dynamic simulations. These results offer valuable insights into the thermal management of van der Waals layered structures in the application of next-generation electronic nanodevices.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 42","pages":" 28651-28656"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/cp/d3cp04085b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The heat transport properties of van der Waals layered structures are crucial for ensuring the reliability and longevity of high-performance optoelectronic equipment. Owing to the two-dimensional nature of atomic layers, the presence of bubbles is commonly observed within these structures. Nevertheless, the effect of bubbles on the interfacial thermal conductance remains unclear. Based on the elastic membrane theory and the improved van der Waals gas state equation, we develop an analytical formula to describe the influence of bubble shape on the interfacial thermal conductance. It shows that the presence of bubbles has a considerable impact on reducing the interfacial thermal conductance across graphene/graphene interfaces. More specifically, the presence of nanobubbles can result in a reduction of up to 53% in the interfacial thermal conductance. The validity of the analytical predictions is confirmed through molecular dynamic simulations. These results offer valuable insights into the thermal management of van der Waals layered structures in the application of next-generation electronic nanodevices.

Abstract Image

纳米气泡诱导的少层石墨烯界面热导率显著降低。
范德华层状结构的热传输特性对于确保高性能光电设备的可靠性和寿命至关重要。由于原子层的二维性质,在这些结构中通常可以观察到气泡的存在。然而,气泡对界面热导率的影响尚不清楚。基于弹性膜理论和改进的范德华气体状态方程,我们建立了一个分析公式来描述气泡形状对界面热导率的影响。研究表明,气泡的存在对降低石墨烯/石墨烯界面的界面热导率有相当大的影响。更具体地说,纳米气泡的存在可以导致界面热导率降低高达53%。通过分子动力学模拟证实了分析预测的有效性。这些结果为范德华层状结构在下一代电子纳米器件应用中的热管理提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信