{"title":"MILP-based security evaluation for AEGIS/Tiaoxin-346/Rocca","authors":"Takuro Shiraya, Nobuyuki Takeuchi, Kosei Sakamoto, Takanori Isobe","doi":"10.1049/ise2.12109","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the security of Advanced Encryption Standard-based authenticated encryption schemes, including AEGIS family, Tiaoxin-346, and Rocca by mixed integer linear programming tools is examined. Specifically, for the initialisation phase of AEGIS, Tiaoxin-346, and Rocca, the security against differential attacks and integral attacks is evaluated by estimating the lower bounds for the number of active S-boxes and utilising division property, respectively. In addition to the estimations of initialisation phases, the security of the encryption phases of AEGIS, Tiaoxin-346, and Rocca against distinguishing attacks on keystream is evaluated by exploiting integral properties. As a result, the authors show that the initialisation phases of AEGIS-128/128L/256, Tiaoxin-346, and Rocca are secure against differential attacks after 4/3/6, 5, and 6 rounds, respectively. Regarding integral attacks, the distinguisher is found on 6/6/7, 15, and 7 rounds in the initialisation phases of AEGIS-128/128L/256, Tiaoxin-346, and Rocca, respectively. Additionally, the integral distinguisher is presented on 2/2/4, 4, and 4 rounds in the encryption phases of AEGIS-128/128L/256, Tiaoxin-346, and Rocca, respectively. As far as it is known, this study’s results are the first distinguishing attacks on the keystream on AEGIS, Tiaoxin-346, and Rocca without relying on weak keys.</p>","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"17 3","pages":"458-467"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ise2.12109","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ise2.12109","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, the security of Advanced Encryption Standard-based authenticated encryption schemes, including AEGIS family, Tiaoxin-346, and Rocca by mixed integer linear programming tools is examined. Specifically, for the initialisation phase of AEGIS, Tiaoxin-346, and Rocca, the security against differential attacks and integral attacks is evaluated by estimating the lower bounds for the number of active S-boxes and utilising division property, respectively. In addition to the estimations of initialisation phases, the security of the encryption phases of AEGIS, Tiaoxin-346, and Rocca against distinguishing attacks on keystream is evaluated by exploiting integral properties. As a result, the authors show that the initialisation phases of AEGIS-128/128L/256, Tiaoxin-346, and Rocca are secure against differential attacks after 4/3/6, 5, and 6 rounds, respectively. Regarding integral attacks, the distinguisher is found on 6/6/7, 15, and 7 rounds in the initialisation phases of AEGIS-128/128L/256, Tiaoxin-346, and Rocca, respectively. Additionally, the integral distinguisher is presented on 2/2/4, 4, and 4 rounds in the encryption phases of AEGIS-128/128L/256, Tiaoxin-346, and Rocca, respectively. As far as it is known, this study’s results are the first distinguishing attacks on the keystream on AEGIS, Tiaoxin-346, and Rocca without relying on weak keys.
期刊介绍:
IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls.
Scope:
Access Control and Database Security
Ad-Hoc Network Aspects
Anonymity and E-Voting
Authentication
Block Ciphers and Hash Functions
Blockchain, Bitcoin (Technical aspects only)
Broadcast Encryption and Traitor Tracing
Combinatorial Aspects
Covert Channels and Information Flow
Critical Infrastructures
Cryptanalysis
Dependability
Digital Rights Management
Digital Signature Schemes
Digital Steganography
Economic Aspects of Information Security
Elliptic Curve Cryptography and Number Theory
Embedded Systems Aspects
Embedded Systems Security and Forensics
Financial Cryptography
Firewall Security
Formal Methods and Security Verification
Human Aspects
Information Warfare and Survivability
Intrusion Detection
Java and XML Security
Key Distribution
Key Management
Malware
Multi-Party Computation and Threshold Cryptography
Peer-to-peer Security
PKIs
Public-Key and Hybrid Encryption
Quantum Cryptography
Risks of using Computers
Robust Networks
Secret Sharing
Secure Electronic Commerce
Software Obfuscation
Stream Ciphers
Trust Models
Watermarking and Fingerprinting
Special Issues. Current Call for Papers:
Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf