Deep features fusion for user authentication based on human activity

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
IET Biometrics Pub Date : 2023-07-26 DOI:10.1049/bme2.12115
Yris Brice Wandji Piugie, Christophe Charrier, Joël Di Manno, Christophe Rosenberger
{"title":"Deep features fusion for user authentication based on human activity","authors":"Yris Brice Wandji Piugie,&nbsp;Christophe Charrier,&nbsp;Joël Di Manno,&nbsp;Christophe Rosenberger","doi":"10.1049/bme2.12115","DOIUrl":null,"url":null,"abstract":"<p>The exponential growth in the use of smartphones means that users must constantly be concerned about the security and privacy of mobile data because the loss of a mobile device could compromise personal information. To address this issue, continuous authentication systems have been proposed, in which users are monitored transparently after initial access to the smartphone. In this study, the authors address the problem of user authentication by considering human activities as behavioural biometric information. The authors convert the behavioural biometric data (considered as time series) into a 2D colour image. This transformation process keeps all the characteristics of the behavioural signal. Time series does not receive any filtering operation with this transformation, and the method is reversible. This signal-to-image transformation allows us to use the 2D convolutional networks to build efficient deep feature vectors. This allows them to compare these feature vectors to the reference template vectors to compute the performance metric. The authors evaluate the performance of the authentication system in terms of Equal Error Rate on a benchmark University of Californy, Irvine Human Activity Recognition dataset, and they show the efficiency of the approach.</p>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"12 4","pages":"222-234"},"PeriodicalIF":1.8000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12115","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Biometrics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bme2.12115","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The exponential growth in the use of smartphones means that users must constantly be concerned about the security and privacy of mobile data because the loss of a mobile device could compromise personal information. To address this issue, continuous authentication systems have been proposed, in which users are monitored transparently after initial access to the smartphone. In this study, the authors address the problem of user authentication by considering human activities as behavioural biometric information. The authors convert the behavioural biometric data (considered as time series) into a 2D colour image. This transformation process keeps all the characteristics of the behavioural signal. Time series does not receive any filtering operation with this transformation, and the method is reversible. This signal-to-image transformation allows us to use the 2D convolutional networks to build efficient deep feature vectors. This allows them to compare these feature vectors to the reference template vectors to compute the performance metric. The authors evaluate the performance of the authentication system in terms of Equal Error Rate on a benchmark University of Californy, Irvine Human Activity Recognition dataset, and they show the efficiency of the approach.

Abstract Image

基于人类活动的深度特征融合用户认证
智能手机使用量的指数级增长意味着用户必须不断关注移动数据的安全和隐私,因为丢失移动设备可能会泄露个人信息。为了解决这个问题,已经提出了连续认证系统,在该系统中,用户在首次访问智能手机后被透明地监控。在这项研究中,作者通过将人类活动视为行为生物特征信息来解决用户身份验证问题。作者将行为生物特征数据(视为时间序列)转换为2D彩色图像。这种转换过程保持了行为信号的所有特征。时间序列不接受任何具有此变换的滤波操作,并且该方法是可逆的。这种信号到图像的转换使我们能够使用2D卷积网络来构建高效的深度特征向量。这允许他们将这些特征向量与参考模板向量进行比较,以计算性能度量。作者在加州大学欧文分校人类活动识别基准数据集上,根据等错误率评估了认证系统的性能,并展示了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Biometrics
IET Biometrics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
0.00%
发文量
46
审稿时长
33 weeks
期刊介绍: The field of biometric recognition - automated recognition of individuals based on their behavioural and biological characteristics - has now reached a level of maturity where viable practical applications are both possible and increasingly available. The biometrics field is characterised especially by its interdisciplinarity since, while focused primarily around a strong technological base, effective system design and implementation often requires a broad range of skills encompassing, for example, human factors, data security and database technologies, psychological and physiological awareness, and so on. Also, the technology focus itself embraces diversity, since the engineering of effective biometric systems requires integration of image analysis, pattern recognition, sensor technology, database engineering, security design and many other strands of understanding. The scope of the journal is intentionally relatively wide. While focusing on core technological issues, it is recognised that these may be inherently diverse and in many cases may cross traditional disciplinary boundaries. The scope of the journal will therefore include any topics where it can be shown that a paper can increase our understanding of biometric systems, signal future developments and applications for biometrics, or promote greater practical uptake for relevant technologies: Development and enhancement of individual biometric modalities including the established and traditional modalities (e.g. face, fingerprint, iris, signature and handwriting recognition) and also newer or emerging modalities (gait, ear-shape, neurological patterns, etc.) Multibiometrics, theoretical and practical issues, implementation of practical systems, multiclassifier and multimodal approaches Soft biometrics and information fusion for identification, verification and trait prediction Human factors and the human-computer interface issues for biometric systems, exception handling strategies Template construction and template management, ageing factors and their impact on biometric systems Usability and user-oriented design, psychological and physiological principles and system integration Sensors and sensor technologies for biometric processing Database technologies to support biometric systems Implementation of biometric systems, security engineering implications, smartcard and associated technologies in implementation, implementation platforms, system design and performance evaluation Trust and privacy issues, security of biometric systems and supporting technological solutions, biometric template protection Biometric cryptosystems, security and biometrics-linked encryption Links with forensic processing and cross-disciplinary commonalities Core underpinning technologies (e.g. image analysis, pattern recognition, computer vision, signal processing, etc.), where the specific relevance to biometric processing can be demonstrated Applications and application-led considerations Position papers on technology or on the industrial context of biometric system development Adoption and promotion of standards in biometrics, improving technology acceptance, deployment and interoperability, avoiding cross-cultural and cross-sector restrictions Relevant ethical and social issues
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信