Power disturbance waveform analysis and proactive application in power systems

Xianyong Xiao, Yi Zhou, Wenhai Zhang, Yang Wang, Zixuan Zheng, Wenxi Hu
{"title":"Power disturbance waveform analysis and proactive application in power systems","authors":"Xianyong Xiao,&nbsp;Yi Zhou,&nbsp;Wenhai Zhang,&nbsp;Yang Wang,&nbsp;Zixuan Zheng,&nbsp;Wenxi Hu","doi":"10.1049/enc2.12084","DOIUrl":null,"url":null,"abstract":"<p>Power disturbances, defined as the waveform distortion of a power system under normal or abnormal conditions, contain considerable system and equipment state information. Obtaining equipment and system state information from power disturbance is very important to ensure the safety of power grids. To adapt to the development of power electronics, informatisation and digitisation of power systems, several applications with waveform-recording devices have obtained large amounts of disturbance waveform data, laying an important foundation for the analysis and application of power disturbance waveform data. First, typical disturbance waveform monitoring devices and a disturbance trigger detection algorithm are introduced. Then, disturbances are classified as switching, fault, or abnormal operations, according to the cause. The characteristics of various typical disturbance waveform data were analysed by combining the simulation and measured data. This paper summarises the application analysis of power disturbance waveform data at both the system and equipment levels. Finally, the construction scheme of a power disturbance waveform data monitoring and analysis platform for two different application scenarios was proposed for commutation failure monitoring and medium-voltage distribution network fault warning. The research conducted here is expected to support the construction of a power disturbance waveform analysis platform.</p>","PeriodicalId":100467,"journal":{"name":"Energy Conversion and Economics","volume":"4 2","pages":"123-136"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/enc2.12084","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Economics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/enc2.12084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Power disturbances, defined as the waveform distortion of a power system under normal or abnormal conditions, contain considerable system and equipment state information. Obtaining equipment and system state information from power disturbance is very important to ensure the safety of power grids. To adapt to the development of power electronics, informatisation and digitisation of power systems, several applications with waveform-recording devices have obtained large amounts of disturbance waveform data, laying an important foundation for the analysis and application of power disturbance waveform data. First, typical disturbance waveform monitoring devices and a disturbance trigger detection algorithm are introduced. Then, disturbances are classified as switching, fault, or abnormal operations, according to the cause. The characteristics of various typical disturbance waveform data were analysed by combining the simulation and measured data. This paper summarises the application analysis of power disturbance waveform data at both the system and equipment levels. Finally, the construction scheme of a power disturbance waveform data monitoring and analysis platform for two different application scenarios was proposed for commutation failure monitoring and medium-voltage distribution network fault warning. The research conducted here is expected to support the construction of a power disturbance waveform analysis platform.

Abstract Image

电力扰动波形分析及其在电力系统中的主动应用
电力扰动,定义为电力系统在正常或异常条件下的波形失真,包含大量的系统和设备状态信息。从电力扰动中获取设备和系统的状态信息对保证电网安全至关重要。为了适应电力电子技术的发展、电力系统的信息化和数字化,波形记录设备的几种应用已经获得了大量的扰动波形数据,为电力扰动波形数据的分析和应用奠定了重要基础。首先,介绍了典型的扰动波形监测装置和扰动触发检测算法。然后,根据原因,将干扰分为切换、故障或异常操作。结合仿真和实测数据,分析了各种典型扰动波形数据的特性。本文总结了电力扰动波形数据在系统和设备层面的应用分析。最后,针对整流故障监测和中压配电网故障预警两种不同的应用场景,提出了电力扰动波形数据监测分析平台的构建方案。本文的研究有望为电力扰动波形分析平台的构建提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信