One-step fabrication of moon-shaped microrobots through in situ solidification of magnetic Janus droplets in microchannels

Droplet Pub Date : 2023-04-11 DOI:10.1002/dro2.56
Yi Huang, Shuai Yin, Haiwang Li, Sihang Liu, Teck Neng Wong
{"title":"One-step fabrication of moon-shaped microrobots through in situ solidification of magnetic Janus droplets in microchannels","authors":"Yi Huang,&nbsp;Shuai Yin,&nbsp;Haiwang Li,&nbsp;Sihang Liu,&nbsp;Teck Neng Wong","doi":"10.1002/dro2.56","DOIUrl":null,"url":null,"abstract":"<p>Special-shaped microscale structures have shed light on new possibilities in key fields of chemistry, medicine, and energy. Asymmetrical microrobots with sensitive magnetic responses can be useful tools in controlled chemical reactions, drug delivery, and functional material synthesis. Microfluidic-based emulsion generation technology is adopted as a powerful platform for the fabrication of steerable microrobots with refined control. Specifically, Janus droplets are generated in microfluidic chips featuring a flow-focusing configuration. Asymmetrical morphologies of the Janus droplets are achieved by balancing the interfacial tensions, where the portion containing magnetic nanoparticles is solidified through the UV-initiated polymerization process right after the formation while the Janus structure is left intact. We succeed in controlling the morphology of the Janus droplet along with the moon-shaped robots hydrodynamically and applying them in flow control at the microscale under external magnetic fields, which are characterized and quantified by three-dimensional profile measurement and high-speed microparticle velocimetry measurement. Our proposed on-chip fabrication method using a microfluidic platform not only provides a method for fabricating magnetic robots but also enables tuning the complex morphologies and functionalities at the microscale, which could shed light on new possibilities in key fields of controlled chemistry reaction, medicine synthesis, and energy generation.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"2 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.56","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Droplet","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dro2.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Special-shaped microscale structures have shed light on new possibilities in key fields of chemistry, medicine, and energy. Asymmetrical microrobots with sensitive magnetic responses can be useful tools in controlled chemical reactions, drug delivery, and functional material synthesis. Microfluidic-based emulsion generation technology is adopted as a powerful platform for the fabrication of steerable microrobots with refined control. Specifically, Janus droplets are generated in microfluidic chips featuring a flow-focusing configuration. Asymmetrical morphologies of the Janus droplets are achieved by balancing the interfacial tensions, where the portion containing magnetic nanoparticles is solidified through the UV-initiated polymerization process right after the formation while the Janus structure is left intact. We succeed in controlling the morphology of the Janus droplet along with the moon-shaped robots hydrodynamically and applying them in flow control at the microscale under external magnetic fields, which are characterized and quantified by three-dimensional profile measurement and high-speed microparticle velocimetry measurement. Our proposed on-chip fabrication method using a microfluidic platform not only provides a method for fabricating magnetic robots but also enables tuning the complex morphologies and functionalities at the microscale, which could shed light on new possibilities in key fields of controlled chemistry reaction, medicine synthesis, and energy generation.

Abstract Image

通过微通道中磁性Janus液滴的原位固化一步制造月球形状的微型机器人
特殊形状的微尺度结构揭示了化学、医学和能源等关键领域的新可能性。具有灵敏磁响应的不对称微型机器人可以成为控制化学反应、药物输送和功能材料合成的有用工具。基于微流体的乳液生成技术被用作制造具有精细控制的可操纵微型机器人的强大平台。具体而言,Janus液滴是在具有流动聚焦配置的微流体芯片中产生的。Janus液滴的不对称形态是通过平衡界面张力来实现的,其中含有磁性纳米颗粒的部分在形成后立即通过UV引发的聚合过程固化,而Janus结构保持完整。我们成功地用流体动力学方法控制了Janus液滴和月形机器人的形态,并将其应用于外部磁场下的微尺度流动控制,通过三维轮廓测量和高速微粒测速测量对其进行了表征和量化。我们提出的使用微流体平台的芯片上制造方法不仅提供了一种制造磁性机器人的方法,而且能够在微尺度上调整复杂的形态和功能,这可以为受控化学反应、药物合成和能源产生等关键领域提供新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信