Comparison of the impacts of dermoscopy image augmentation methods on skin cancer classification and a new augmentation method with wavelet packets

IF 3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Evgin Goceri
{"title":"Comparison of the impacts of dermoscopy image augmentation methods on skin cancer classification and a new augmentation method with wavelet packets","authors":"Evgin Goceri","doi":"10.1002/ima.22890","DOIUrl":null,"url":null,"abstract":"<p>This work aims to determine the most suitable technique for dermoscopy image augmentation to improve the performance of lesion classifications. Also, a new augmentation technique based on wavelet packet transformations has been developed. The contribution of this work is five-fold. First, a comprehensive review of the methods used for dermoscopy image augmentation has been presented. Second, a new augmentation method has been developed. Third, the augmentation methods have been implemented with the same images for meaningful comparisons. Fourth, three network architectures have been implemented to see the effects of the augmented images obtained from each augmentation method on classifications. Fifth, the results of the same classifier trained separately using expanded data sets have been compared with five different metrics. The proposed augmentation method increases the classification accuracy by at least 4.77% compared with the accuracy values obtained from the same classifier with other augmentation methods.</p>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"33 5","pages":"1727-1744"},"PeriodicalIF":3.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.22890","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 8

Abstract

This work aims to determine the most suitable technique for dermoscopy image augmentation to improve the performance of lesion classifications. Also, a new augmentation technique based on wavelet packet transformations has been developed. The contribution of this work is five-fold. First, a comprehensive review of the methods used for dermoscopy image augmentation has been presented. Second, a new augmentation method has been developed. Third, the augmentation methods have been implemented with the same images for meaningful comparisons. Fourth, three network architectures have been implemented to see the effects of the augmented images obtained from each augmentation method on classifications. Fifth, the results of the same classifier trained separately using expanded data sets have been compared with five different metrics. The proposed augmentation method increases the classification accuracy by at least 4.77% compared with the accuracy values obtained from the same classifier with other augmentation methods.

皮肤镜图像增强方法对皮肤癌症分类的影响与小波包增强方法的比较
这项工作旨在确定最适合的皮肤镜图像增强技术,以提高病变分类的性能。此外,还开发了一种新的基于小波包变换的增强技术。这项工作的贡献是五倍。首先,对用于皮肤镜图像增强的方法进行了全面的综述。其次,开发了一种新的增强方法。第三,为了进行有意义的比较,已经用相同的图像实现了增强方法。第四,已经实现了三种网络架构,以查看从每种增强方法获得的增强图像对分类的影响。第五,将使用扩展数据集单独训练的同一分类器的结果与五种不同的度量进行了比较。与使用其他增强方法从相同分类器获得的准确度值相比,所提出的增强方法将分类准确度提高了至少4.77%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Imaging Systems and Technology
International Journal of Imaging Systems and Technology 工程技术-成像科学与照相技术
CiteScore
6.90
自引率
6.10%
发文量
138
审稿时长
3 months
期刊介绍: The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals. IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging. The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered. The scope of the journal includes, but is not limited to, the following in the context of biomedical research: Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.; Neuromodulation and brain stimulation techniques such as TMS and tDCS; Software and hardware for imaging, especially related to human and animal health; Image segmentation in normal and clinical populations; Pattern analysis and classification using machine learning techniques; Computational modeling and analysis; Brain connectivity and connectomics; Systems-level characterization of brain function; Neural networks and neurorobotics; Computer vision, based on human/animal physiology; Brain-computer interface (BCI) technology; Big data, databasing and data mining.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信