Multi-hop teleportation of arbitrary multi-qudit states based on d-level GHZ channels

IF 2.5 Q3 QUANTUM SCIENCE & TECHNOLOGY
Yi Ding, Min Jiang
{"title":"Multi-hop teleportation of arbitrary multi-qudit states based on d-level GHZ channels","authors":"Yi Ding,&nbsp;Min Jiang","doi":"10.1049/qtc2.12052","DOIUrl":null,"url":null,"abstract":"<p>The combination of quantum communication technology and wireless networks brings a flexible and secure communication method that adapts to a more complex and open network environment. A new multi-hop teleportation scheme is investigated for transferring arbitrary unknown multi-qudit states between two distant parties. Based on a more general quantum routing protocol, intermediate nodes are introduced and linked with each other via <i>d</i>-level entangled Greenberger-Horne-Zeilinger states as quantum channels. In this multi-hop teleportation protocol, the source node and all the intermediate nodes can perform the entanglement measurement and transmit the measurement results simultaneously, thus reducing the time consumption largely. Furthermore, a general matrix formula is derived between the measurement results and the receiver's state, which enables the receiver to restore the unknown state efficiently. Compared with previous multi-hop teleportation protocols, the teleportation protocol of arbitrary unknown multi-qudit states of the authors can transfer more information, and it demonstrates lower computational complexity and higher flexibility.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"4 1","pages":"39-55"},"PeriodicalIF":2.5000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12052","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Quantum Communication","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/qtc2.12052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The combination of quantum communication technology and wireless networks brings a flexible and secure communication method that adapts to a more complex and open network environment. A new multi-hop teleportation scheme is investigated for transferring arbitrary unknown multi-qudit states between two distant parties. Based on a more general quantum routing protocol, intermediate nodes are introduced and linked with each other via d-level entangled Greenberger-Horne-Zeilinger states as quantum channels. In this multi-hop teleportation protocol, the source node and all the intermediate nodes can perform the entanglement measurement and transmit the measurement results simultaneously, thus reducing the time consumption largely. Furthermore, a general matrix formula is derived between the measurement results and the receiver's state, which enables the receiver to restore the unknown state efficiently. Compared with previous multi-hop teleportation protocols, the teleportation protocol of arbitrary unknown multi-qudit states of the authors can transfer more information, and it demonstrates lower computational complexity and higher flexibility.

Abstract Image

基于d级GHZ信道的任意多量子态的多跳隐形传态
量子通信技术和无线网络的结合带来了一种灵活、安全的通信方法,可以适应更复杂、更开放的网络环境。研究了一种新的多跳隐形传态方案,用于在两个遥远的方之间传输任意未知的多量子态。基于更通用的量子路由协议,引入中间节点,并通过d级纠缠的Greenberger-Horne-Zeilinger态作为量子通道相互连接。在这种多跳隐形传态协议中,源节点和所有中间节点可以同时进行纠缠测量和传输测量结果,从而大大减少了时间消耗。此外,在测量结果和接收器状态之间导出了一个通用矩阵公式,使接收器能够有效地恢复未知状态。与以往的多跳隐形传送协议相比,作者提出的任意未知多量子态的隐形传送协议可以传递更多的信息,并且具有较低的计算复杂度和较高的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信