The multivariate component zero-inflated Poisson model for correlated count data analysis

Pub Date : 2023-08-27 DOI:10.1111/anzs.12395
Qin Wu, Guo-Liang Tian, Tao Li, Man-Lai Tang, Chi Zhang
{"title":"The multivariate component zero-inflated Poisson model for correlated count data analysis","authors":"Qin Wu,&nbsp;Guo-Liang Tian,&nbsp;Tao Li,&nbsp;Man-Lai Tang,&nbsp;Chi Zhang","doi":"10.1111/anzs.12395","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Multivariate zero-inflated Poisson (ZIP) distributions are important tools for modelling and analysing correlated count data with extra zeros. Unfortunately, existing multivariate ZIP distributions consider only the overall zero-inflation while the component zero-inflation is not well addressed. This paper proposes a flexible multivariate ZIP distribution, called the multivariate component ZIP distribution, in which both the overall and component zero-inflations are taken into account. Likelihood-based inference procedures including the calculation of maximum likelihood estimates of parameters in the model without and with covariates are provided. Simulation studies indicate that the performance of the proposed methods on the multivariate component ZIP model is satisfactory. The Australia health care utilisation data set is analysed to demonstrate that the new distribution is more appropriate than the existing multivariate ZIP distributions.</p>\n </div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multivariate zero-inflated Poisson (ZIP) distributions are important tools for modelling and analysing correlated count data with extra zeros. Unfortunately, existing multivariate ZIP distributions consider only the overall zero-inflation while the component zero-inflation is not well addressed. This paper proposes a flexible multivariate ZIP distribution, called the multivariate component ZIP distribution, in which both the overall and component zero-inflations are taken into account. Likelihood-based inference procedures including the calculation of maximum likelihood estimates of parameters in the model without and with covariates are provided. Simulation studies indicate that the performance of the proposed methods on the multivariate component ZIP model is satisfactory. The Australia health care utilisation data set is analysed to demonstrate that the new distribution is more appropriate than the existing multivariate ZIP distributions.

分享
查看原文
用于相关计数数据分析的多元零膨胀泊松模型
多变量零膨胀泊松(ZIP)分布是建模和分析具有额外零的相关计数数据的重要工具。不幸的是,现有的多变量ZIP分布只考虑总体零通货膨胀,而零通货膨胀分量没有得到很好的解决。本文提出了一种灵活的多元ZIP分布,称为多元分量ZIP分布,其中同时考虑了整体膨胀和零分量膨胀。提供了基于似然的推理程序,包括在没有协变量和有协变量的情况下计算模型中参数的最大似然估计。仿真研究表明,所提出的方法在多元分量ZIP模型上的性能是令人满意的。对澳大利亚医疗保健利用率数据集进行了分析,以证明新的分布比现有的多变量ZIP分布更合适。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信