Embedding latent class regression and latent class distal outcome models into cluster-weighted latent class analysis: a detailed simulation experiment

Pub Date : 2023-09-22 DOI:10.1111/anzs.12396
Roberto Di Mari, Antonio Punzo, Zsuzsa Bakk
{"title":"Embedding latent class regression and latent class distal outcome models into cluster-weighted latent class analysis: a detailed simulation experiment","authors":"Roberto Di Mari,&nbsp;Antonio Punzo,&nbsp;Zsuzsa Bakk","doi":"10.1111/anzs.12396","DOIUrl":null,"url":null,"abstract":"<p>Usually in latent class (LC) analysis, external predictors are taken to be cluster conditional probability predictors (LC models with external predictors), and/or score conditional probability predictors (LC regression models). In such cases, their distribution is not of interest. Class-specific distribution is of interest in the distal outcome model, when the distribution of the external variables is assumed to depend on LC membership. In this paper, we consider a more general formulation, that embeds both the LC regression and the distal outcome models, as is typically done in cluster-weighted modelling. This allows us to investigate (1) whether the distribution of the external variables differs across classes, (2) whether there are significant direct effects of the external variables on the indicators, by modelling jointly the relationship between the external and the latent variables. We show the advantages of the proposed modelling approach through a set of artificial examples, an extensive simulation study and an empirical application about psychological contracts among employees and employers in Belgium and the Netherlands.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/anzs.12396","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Usually in latent class (LC) analysis, external predictors are taken to be cluster conditional probability predictors (LC models with external predictors), and/or score conditional probability predictors (LC regression models). In such cases, their distribution is not of interest. Class-specific distribution is of interest in the distal outcome model, when the distribution of the external variables is assumed to depend on LC membership. In this paper, we consider a more general formulation, that embeds both the LC regression and the distal outcome models, as is typically done in cluster-weighted modelling. This allows us to investigate (1) whether the distribution of the external variables differs across classes, (2) whether there are significant direct effects of the external variables on the indicators, by modelling jointly the relationship between the external and the latent variables. We show the advantages of the proposed modelling approach through a set of artificial examples, an extensive simulation study and an empirical application about psychological contracts among employees and employers in Belgium and the Netherlands.

Abstract Image

分享
查看原文
将潜在类别回归和潜在类别远端结果模型嵌入聚类加权潜在类别分析:一个详细的模拟实验
通常在潜在类别(LC)分析中,外部预测因子被视为聚类条件概率预测因子(具有外部预测因子的LC模型)和/或评分条件概率预测函数(LC回归模型)。在这种情况下,他们的分配是不感兴趣的。当假设外部变量的分布取决于LC成员时,类特异性分布在远端结果模型中是感兴趣的。在本文中,我们考虑了一个更通用的公式,它嵌入了LC回归和远端结果模型,就像在聚类加权模型中通常做的那样。这使我们能够通过联合建模外部变量和潜在变量之间的关系,研究(1)外部变量的分布是否在不同类别中不同,(2)外部变量对指标是否有显著的直接影响。我们通过一组人工示例、一项广泛的模拟研究以及比利时和荷兰员工和雇主心理契约的实证应用,展示了所提出的建模方法的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信