{"title":"Potentially significant amounts of sulfate-S found in phosphorus fertilizers","authors":"J. J. Camberato, P. Li, R. L. Nielsen","doi":"10.1002/cft2.20248","DOIUrl":null,"url":null,"abstract":"<p>The occurrence of S deficiency in Midwest crops in the past 20 years is likely a result of the consistent decline of atmospheric S deposition during this time period. In the absence of intentional S fertilization, crops utilize SO<sub>4</sub>-S mineralized from soil organic matter and potentially the incidental application of S in non-S fertilizers. Based on the analysis of hundreds of P fertilizer samples in 2021 and 2022, we found monoammonium phosphate (MAP), diammonium phosphate (DAP), triple superphosphate (TSP), and ammonium polyphosphate (APP) had SO<sub>4</sub>-S concentrations of 1.88 ± 0.35, 1.80 ± 0.30, 1.66 ± 0.27, and 0.61 ± 0.18% SO<sub>4</sub>-S (mean ± standard deviation), respectively. If MAP, DAP, and TSP are applied to replace P removal of average yielding corn (<i>Zea mays</i> L.) and soybean (<i>Glycine max</i> L.) crops grown in rotation, SO<sub>4</sub>-S applied by MAP, DAP, and TSP at median and 3rd quartile values would be 4.0–4.6 lb SO<sub>4</sub>-S acre<sup>−1</sup>, approximately equivalent to ∼42–52% of the S removed in the grain of a single crop. If used as a starter fertilizer (5 gal acre<sup>−1</sup>) APP would apply <0.4 lb acre<sup>−1</sup>, <4% of grain S removal. The crop availability of SO<sub>4</sub>-S in P fertilizers is conditional on the timing of their application relative to crop need, soil properties, and rainfall in addition to the amount of S applied. The contribution of P fertilizers to S cycling in environmental studies should also be considered.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cft2.20248","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cft2.20248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The occurrence of S deficiency in Midwest crops in the past 20 years is likely a result of the consistent decline of atmospheric S deposition during this time period. In the absence of intentional S fertilization, crops utilize SO4-S mineralized from soil organic matter and potentially the incidental application of S in non-S fertilizers. Based on the analysis of hundreds of P fertilizer samples in 2021 and 2022, we found monoammonium phosphate (MAP), diammonium phosphate (DAP), triple superphosphate (TSP), and ammonium polyphosphate (APP) had SO4-S concentrations of 1.88 ± 0.35, 1.80 ± 0.30, 1.66 ± 0.27, and 0.61 ± 0.18% SO4-S (mean ± standard deviation), respectively. If MAP, DAP, and TSP are applied to replace P removal of average yielding corn (Zea mays L.) and soybean (Glycine max L.) crops grown in rotation, SO4-S applied by MAP, DAP, and TSP at median and 3rd quartile values would be 4.0–4.6 lb SO4-S acre−1, approximately equivalent to ∼42–52% of the S removed in the grain of a single crop. If used as a starter fertilizer (5 gal acre−1) APP would apply <0.4 lb acre−1, <4% of grain S removal. The crop availability of SO4-S in P fertilizers is conditional on the timing of their application relative to crop need, soil properties, and rainfall in addition to the amount of S applied. The contribution of P fertilizers to S cycling in environmental studies should also be considered.
在过去20年中,中西部作物缺硫的发生可能是这一时期大气硫沉积持续下降的结果。在没有有意施硫的情况下,作物利用土壤有机质矿化的SO4-S,并可能在非硫肥料中偶然施用S。基于对2021年和2022年数百个磷肥样品的分析,我们发现磷酸一铵(MAP)、磷酸二铵(DAP)、过磷酸钙(TSP)和聚磷酸铵(APP)的SO4-S浓度分别为1.88±0.35、1.80±0.30、1.66±0.27和0.61±0.18%SO4-S(平均值±标准差)。如果用MAP、DAP和TSP代替轮作的平均产量玉米(Zea mays L.)和大豆(Glycine max L。如果用作起始肥料(5加仑英亩−1),APP将施用<;0.4磅英亩-1,<;4%的颗粒S去除。磷肥中SO4-S的作物可用性取决于施用时间、作物需求、土壤性质和降雨量以及施用量。在环境研究中,还应考虑磷肥对硫循环的贡献。