Multistage hierarchical capture–recapture models

IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Environmetrics Pub Date : 2023-03-20 DOI:10.1002/env.2799
Mevin B. Hooten, Michael R. Schwob, Devin S. Johnson, Jacob S. Ivan
{"title":"Multistage hierarchical capture–recapture models","authors":"Mevin B. Hooten,&nbsp;Michael R. Schwob,&nbsp;Devin S. Johnson,&nbsp;Jacob S. Ivan","doi":"10.1002/env.2799","DOIUrl":null,"url":null,"abstract":"<p>Ecologists increasingly rely on Bayesian methods to fit capture–recapture models. Capture–recapture models are used to estimate abundance while accounting for imperfect detectability in individual-level data. A variety of implementations exist for such models, including integrated likelihood, parameter-expanded data augmentation, and combinations of those. Capture–recapture models with latent random effects can be computationally intensive to fit using conventional Bayesian algorithms. We identify alternative specifications of capture–recapture models by considering a conditional representation of the model structure. The resulting alternative model can be specified in a way that leads to more stable computation and allows us to fit the desired model in stages while leveraging parallel computing resources. Our model specification includes a component for the capture history of detected individuals and another component for the sample size which is random before observed. We demonstrate this approach using three examples including simulation and two datasets resulting from capture–recapture studies of different species.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"34 6","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2799","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 3

Abstract

Ecologists increasingly rely on Bayesian methods to fit capture–recapture models. Capture–recapture models are used to estimate abundance while accounting for imperfect detectability in individual-level data. A variety of implementations exist for such models, including integrated likelihood, parameter-expanded data augmentation, and combinations of those. Capture–recapture models with latent random effects can be computationally intensive to fit using conventional Bayesian algorithms. We identify alternative specifications of capture–recapture models by considering a conditional representation of the model structure. The resulting alternative model can be specified in a way that leads to more stable computation and allows us to fit the desired model in stages while leveraging parallel computing resources. Our model specification includes a component for the capture history of detected individuals and another component for the sample size which is random before observed. We demonstrate this approach using three examples including simulation and two datasets resulting from capture–recapture studies of different species.

多阶段分层捕获-重新捕获模型
生态学家越来越依赖贝叶斯方法来拟合捕获-再捕获模型。捕获-再捕获模型用于估计丰度,同时考虑个体水平数据中不完全的可探测性。这种模型有多种实现方式,包括集成似然、参数扩展数据扩充以及它们的组合。具有潜在随机效应的捕获-再捕获模型可能需要大量计算才能使用传统的贝叶斯算法进行拟合。我们通过考虑模型结构的条件表示来确定捕获-再捕获模型的替代规范。由此产生的替代模型可以以一种方式指定,该方式导致更稳定的计算,并允许我们在利用并行计算资源的同时分阶段拟合所需的模型。我们的模型规范包括一个用于检测到的个体的捕获历史的组件和另一个用于在观察之前随机的样本量的组件。我们使用三个例子演示了这种方法,包括模拟和不同物种捕获-再捕获研究产生的两个数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信