{"title":"LMSA-Net: A lightweight multi-scale aware network for retinal vessel segmentation","authors":"Jian Chen, Jiaze Wan, Zhenghan Fang, Lifang Wei","doi":"10.1002/ima.22881","DOIUrl":null,"url":null,"abstract":"<p>Retinal vessel segmentation is an essential part of ocular disease diagnosis. However, due to complex vascular structure, large-scale variations of retinal vessels, as well as inefficiency of vessel segmentation speed, accurate and fast automatic vessel segmentation for retinal images is still technically challenging. To tackle these issues, we present a lightweight multi-scale-aware network (LMSA-Net) for retinal vessel segmentation. The network leverages the encoder-decoder structure that was used in U-Net. In the encoder, we propose a ghosted sandglass residual (GSR) block, aiming at greatly reducing the parameters and computational cost while obtaining richer semantic information. After that, a multi-scale feature-aware aggregation (MFA) module is designed to perceive multi-scale semantic information for effective information extraction. Then, a global adaptive upsampling (GAU) module is proposed to guide the effective fusion of high- and low-level semantic information in the decoder. Experiments are conducted on three public datasets, including DRIVE, CHASE_DB1, and STARE. The experimental results indicate the effectiveness of the LMSA-Net, which can achieve better segmentation performance than other state-of-the-art methods.</p>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"33 5","pages":"1515-1530"},"PeriodicalIF":3.0000,"publicationDate":"2023-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.22881","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Retinal vessel segmentation is an essential part of ocular disease diagnosis. However, due to complex vascular structure, large-scale variations of retinal vessels, as well as inefficiency of vessel segmentation speed, accurate and fast automatic vessel segmentation for retinal images is still technically challenging. To tackle these issues, we present a lightweight multi-scale-aware network (LMSA-Net) for retinal vessel segmentation. The network leverages the encoder-decoder structure that was used in U-Net. In the encoder, we propose a ghosted sandglass residual (GSR) block, aiming at greatly reducing the parameters and computational cost while obtaining richer semantic information. After that, a multi-scale feature-aware aggregation (MFA) module is designed to perceive multi-scale semantic information for effective information extraction. Then, a global adaptive upsampling (GAU) module is proposed to guide the effective fusion of high- and low-level semantic information in the decoder. Experiments are conducted on three public datasets, including DRIVE, CHASE_DB1, and STARE. The experimental results indicate the effectiveness of the LMSA-Net, which can achieve better segmentation performance than other state-of-the-art methods.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.