Graphitic carbon nitride nanomaterials for high-performance supercapacitors

Yunxuan Chen, Chao Lu
{"title":"Graphitic carbon nitride nanomaterials for high-performance supercapacitors","authors":"Yunxuan Chen,&nbsp;Chao Lu","doi":"10.1002/cnl2.87","DOIUrl":null,"url":null,"abstract":"<p>Graphitic carbon nitride is a promising material as an electrode material for advanced electrochemical energy storage devices because of its controllable structure, physicochemical properties, and abundant active sites. However, its intrinsic properties as electrode materials can not be fully expressed owing to limited electrical properties, which impede charge transfer and material exchange inside devices. During the past decade, the challenge has been addressed through material engineering strategies, such as exfoliation and composition, and then advanced energy devices, such as supercapacitors, have been assembled. In this regard, a timely review of graphitic carbon nitride for high-performance supercapacitors requires to be put forward for summarizing past studies and inspiring future research works as well. This review article summarizes recent progress in material synthesis and property regulation of graphitic carbon nitride nanomaterials and their application in assembling advanced supercapacitors with high energy density and superior working stability. Finally, based on existing research and our experimental experience, a perspective for directing future research has been presented concerning material synthesis and electrochemical application of graphitic carbon nitride.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"2 5","pages":"585-602"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.87","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Graphitic carbon nitride is a promising material as an electrode material for advanced electrochemical energy storage devices because of its controllable structure, physicochemical properties, and abundant active sites. However, its intrinsic properties as electrode materials can not be fully expressed owing to limited electrical properties, which impede charge transfer and material exchange inside devices. During the past decade, the challenge has been addressed through material engineering strategies, such as exfoliation and composition, and then advanced energy devices, such as supercapacitors, have been assembled. In this regard, a timely review of graphitic carbon nitride for high-performance supercapacitors requires to be put forward for summarizing past studies and inspiring future research works as well. This review article summarizes recent progress in material synthesis and property regulation of graphitic carbon nitride nanomaterials and their application in assembling advanced supercapacitors with high energy density and superior working stability. Finally, based on existing research and our experimental experience, a perspective for directing future research has been presented concerning material synthesis and electrochemical application of graphitic carbon nitride.

Abstract Image

用于高性能超级电容器的石墨氮化碳纳米材料
石墨氮化碳由于其可控的结构、物理化学性质和丰富的活性位点,是一种很有前途的先进电化学储能器件电极材料。然而,由于有限的电学性质,其作为电极材料的固有性质无法完全表达,这阻碍了器件内部的电荷转移和材料交换。在过去的十年里,这一挑战已经通过材料工程策略得到了解决,如剥离和合成,然后组装了先进的能源设备,如超级电容器。在这方面,需要及时对用于高性能超级电容器的石墨氮化碳进行综述,以总结过去的研究,并启发未来的研究工作。本文综述了石墨氮化碳纳米材料的材料合成和性能调控的最新进展,以及它们在组装具有高能量密度和优异工作稳定性的先进超级电容器中的应用。最后,基于现有的研究和我们的实验经验,对石墨氮化碳的材料合成和电化学应用提出了指导未来研究的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信