Eigenvalue analysis of planar linear multibody system under conservative force based on the transfer matrix method

IF 3.4 Q1 ENGINEERING, MECHANICAL
Jinghong Wang, Xiaoting Rui, Xun Wang, Jianshu Zhang, Qinbo Zhou, Junjie Gu
{"title":"Eigenvalue analysis of planar linear multibody system under conservative force based on the transfer matrix method","authors":"Jinghong Wang,&nbsp;Xiaoting Rui,&nbsp;Xun Wang,&nbsp;Jianshu Zhang,&nbsp;Qinbo Zhou,&nbsp;Junjie Gu","doi":"10.1002/msd2.12048","DOIUrl":null,"url":null,"abstract":"<p>The linear multibody system transfer matrix method (LMSTMM) provides a powerful tool for analyzing the vibration characteristics of a mechanical system. However, the original LMSTMM cannot resolve the eigenvalues of the systems with ideal hinges (i.e., revolute hinge, sliding hinge, spherical hinge, cylindrical hinge, etc.) or bodies under conservative forces due to the lack of the corresponding transfer matrices. This paper enables the LMSTMM to solve the eigenvalues of the planar multibody systems with ideal hinges or rigid bodies under conservative forces. For a rigid body, the transfer matrix can now consider coupling terms between forces and kinematic state perturbations. Also, conservative forces that contribute to the eigenvalues can be considered. Meanwhile, ideal hinges are introduced to LMSTMM, which enables the treatment of eigenvalues of general multibody systems using LMSTMM. Finally, the comparative analysis with ADAMS software and analytical solutions verifies the effectiveness of the proposed approach in this paper.</p>","PeriodicalId":60486,"journal":{"name":"国际机械系统动力学学报(英文)","volume":"3 1","pages":"12-24"},"PeriodicalIF":3.4000,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.12048","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"国际机械系统动力学学报(英文)","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/msd2.12048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The linear multibody system transfer matrix method (LMSTMM) provides a powerful tool for analyzing the vibration characteristics of a mechanical system. However, the original LMSTMM cannot resolve the eigenvalues of the systems with ideal hinges (i.e., revolute hinge, sliding hinge, spherical hinge, cylindrical hinge, etc.) or bodies under conservative forces due to the lack of the corresponding transfer matrices. This paper enables the LMSTMM to solve the eigenvalues of the planar multibody systems with ideal hinges or rigid bodies under conservative forces. For a rigid body, the transfer matrix can now consider coupling terms between forces and kinematic state perturbations. Also, conservative forces that contribute to the eigenvalues can be considered. Meanwhile, ideal hinges are introduced to LMSTMM, which enables the treatment of eigenvalues of general multibody systems using LMSTMM. Finally, the comparative analysis with ADAMS software and analytical solutions verifies the effectiveness of the proposed approach in this paper.

Abstract Image

基于传递矩阵法的平面线性多体系统在保守力作用下的特征值分析
线性多体系统传递矩阵法为分析机械系统的振动特性提供了有力的工具。然而,由于缺乏相应的传递矩阵,原始LMSTMM无法求解具有理想铰链(即旋转铰链、滑动铰链、球面铰链、圆柱铰链等)或物体在保守力下的系统的特征值。本文使LMSTMM能够求解具有理想铰链或刚体的平面多体系统在保守力作用下的特征值。对于刚体,传递矩阵现在可以考虑力和运动状态扰动之间的耦合项。此外,可以考虑对本征值有贡献的保守力。同时,在LMSTMM中引入了理想铰链,使LMSTMM能够处理一般多体系统的特征值。最后,通过与ADAMS软件的对比分析和解析解验证了本文方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信