{"title":"Families of complex-valued covariance models through integration","authors":"Sandra De Iaco","doi":"10.1002/env.2779","DOIUrl":null,"url":null,"abstract":"<p>In geostatistics, the theory of complex-valued random fields is often used to provide an appropriate characterization of vector data with two components. In this context, constructing new classes of complex covariance models to be used in structural analysis and, then for stochastic interpolation or simulation, represents a focus of particular interest in the scientific community and in many areas of applied sciences, such as in electrical engineering, oceanography, or meteorology. In this article, after a review of the theoretical background of a random field in a complex domain, the construction of new classes of complex-valued covariance models is proposed. In particular, the complex-valued covariance models obtained by the convolution of the real component are generalized and wide new classes of models are generated through integration. These families include even non-integrable real and imaginary components of the resulting complex covariance models. It is also illustrated how to fit the real and imaginary components of the complex models together with the density function used in the integration. The procedure is clarified through a case study with oceanographic data.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"34 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2779","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 2
Abstract
In geostatistics, the theory of complex-valued random fields is often used to provide an appropriate characterization of vector data with two components. In this context, constructing new classes of complex covariance models to be used in structural analysis and, then for stochastic interpolation or simulation, represents a focus of particular interest in the scientific community and in many areas of applied sciences, such as in electrical engineering, oceanography, or meteorology. In this article, after a review of the theoretical background of a random field in a complex domain, the construction of new classes of complex-valued covariance models is proposed. In particular, the complex-valued covariance models obtained by the convolution of the real component are generalized and wide new classes of models are generated through integration. These families include even non-integrable real and imaginary components of the resulting complex covariance models. It is also illustrated how to fit the real and imaginary components of the complex models together with the density function used in the integration. The procedure is clarified through a case study with oceanographic data.
期刊介绍:
Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences.
The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.