Maria Naz, Munam Ali Shah, Hasan Ali Khattak, Abdul Wahid, Muhammad Nabeel Asghar, Hafiz Tayyab Rauf, Muhammad Attique Khan, Zoobia Ameer
{"title":"Multi-branch sustainable convolutional neural network for disease classification","authors":"Maria Naz, Munam Ali Shah, Hasan Ali Khattak, Abdul Wahid, Muhammad Nabeel Asghar, Hafiz Tayyab Rauf, Muhammad Attique Khan, Zoobia Ameer","doi":"10.1002/ima.22884","DOIUrl":null,"url":null,"abstract":"<p>Pandemic and natural disasters are growing more often, imposing even more pressure on life care services and users. There are knowledge gaps regarding how to prevent disasters and pandemics. In recent years, after heart disease, corona virus disease-19 (COVID-19), brain stroke, and cancer are at their peak. Different machine learning and deep learning-based techniques are presented to detect these diseases. Existing technique uses two branches that have been used for detection and prediction of disease accurately such as brain hemorrhage. However, existing techniques have been focused on the detection of specific diseases with double-branches convolutional neural networks (CNNs). There is a need to develop a model to detect multiple diseases at the same time using computerized tomography (CT) scan images. We proposed a model that consists of 12 branches of CNN to detect the different types of diseases with their subtypes using CT scan images and classify them more accurately. We proposed multi-branch sustainable CNN model with deep learning architecture trained on the brain CT hemorrhage, COVID-19 lung CT scans and chest CT scans with subtypes of lung cancers. Feature extracted automatically from preprocessed input data and passed to classifiers for classification in the form of concatenated feature vectors. Six classifiers support vector machine (SVM), decision tree (DT), K-nearest neighbor (K-NN), artificial neural network (ANN), naïve Bayes (NB), linear regression (LR) classifiers, and three ensembles the random forest (RF), AdaBoost, gradient boosting ensembles were tested on our model for classification and prediction. Our model achieved the best results on RF on each dataset. Respectively, on brain CT hemorrhage achieved (99.79%) accuracy, on COVID-19 lung CT scans achieved (97.61%), and on chest CT scans dataset achieved (98.77%).</p>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"33 5","pages":"1621-1633"},"PeriodicalIF":3.0000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.22884","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Pandemic and natural disasters are growing more often, imposing even more pressure on life care services and users. There are knowledge gaps regarding how to prevent disasters and pandemics. In recent years, after heart disease, corona virus disease-19 (COVID-19), brain stroke, and cancer are at their peak. Different machine learning and deep learning-based techniques are presented to detect these diseases. Existing technique uses two branches that have been used for detection and prediction of disease accurately such as brain hemorrhage. However, existing techniques have been focused on the detection of specific diseases with double-branches convolutional neural networks (CNNs). There is a need to develop a model to detect multiple diseases at the same time using computerized tomography (CT) scan images. We proposed a model that consists of 12 branches of CNN to detect the different types of diseases with their subtypes using CT scan images and classify them more accurately. We proposed multi-branch sustainable CNN model with deep learning architecture trained on the brain CT hemorrhage, COVID-19 lung CT scans and chest CT scans with subtypes of lung cancers. Feature extracted automatically from preprocessed input data and passed to classifiers for classification in the form of concatenated feature vectors. Six classifiers support vector machine (SVM), decision tree (DT), K-nearest neighbor (K-NN), artificial neural network (ANN), naïve Bayes (NB), linear regression (LR) classifiers, and three ensembles the random forest (RF), AdaBoost, gradient boosting ensembles were tested on our model for classification and prediction. Our model achieved the best results on RF on each dataset. Respectively, on brain CT hemorrhage achieved (99.79%) accuracy, on COVID-19 lung CT scans achieved (97.61%), and on chest CT scans dataset achieved (98.77%).
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.