A fluorescent probe based on a phenylalanine derivative is capable of sequential detection of Zn2+ and Cys/His

IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Qiu-Yu Yu, Chuan-Wan Wei, Xiao-Juan Wang, Shu-Qin Gao, Xin-Yi Tong, Ying-Wu Lin
{"title":"A fluorescent probe based on a phenylalanine derivative is capable of sequential detection of Zn2+ and Cys/His","authors":"Qiu-Yu Yu,&nbsp;Chuan-Wan Wei,&nbsp;Xiao-Juan Wang,&nbsp;Shu-Qin Gao,&nbsp;Xin-Yi Tong,&nbsp;Ying-Wu Lin","doi":"10.1007/s00775-022-01984-x","DOIUrl":null,"url":null,"abstract":"<div><p>A facile and dual fluorescent chemosensor (named 7-IDF) based on a phenylalanine derivative with an indole group was designed and synthesized. 7-IDF can selectively and sensitively detect Zn<sup>2+</sup> via obvious fluorescence enhancement in an aqueous solution. Remarkably, the 7-IDF-Zn complex with blue luminescence has higher selectivity toward cysteine (Cys) and histidine (His) than for other amino acids. Intriguingly, 7-IDF can also be used as an excellent probe to detect Zn<sup>2+</sup> in real water samples. Moreover, 7-IDF and 7-IDF-Zn possess excellent biocompatibility and cell permeability, and 7-IDF can consecutively detect Zn<sup>2+</sup> and Cys/His in Hela cells through fluorescence imaging experiments. This study suggests that the phenylalanine-based chemosensor possesses great potential applications for the sequential detection of Zn<sup>2+</sup> and Cys/His in biosystems.</p><h3>Graphical abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":603,"journal":{"name":"JBIC Journal of Biological Inorganic Chemistry","volume":"28 2","pages":"205 - 211"},"PeriodicalIF":2.7000,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00775-022-01984-x.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JBIC Journal of Biological Inorganic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s00775-022-01984-x","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

A facile and dual fluorescent chemosensor (named 7-IDF) based on a phenylalanine derivative with an indole group was designed and synthesized. 7-IDF can selectively and sensitively detect Zn2+ via obvious fluorescence enhancement in an aqueous solution. Remarkably, the 7-IDF-Zn complex with blue luminescence has higher selectivity toward cysteine (Cys) and histidine (His) than for other amino acids. Intriguingly, 7-IDF can also be used as an excellent probe to detect Zn2+ in real water samples. Moreover, 7-IDF and 7-IDF-Zn possess excellent biocompatibility and cell permeability, and 7-IDF can consecutively detect Zn2+ and Cys/His in Hela cells through fluorescence imaging experiments. This study suggests that the phenylalanine-based chemosensor possesses great potential applications for the sequential detection of Zn2+ and Cys/His in biosystems.

Graphical abstract

Abstract Image

基于苯丙氨酸衍生物的荧光探针能够连续检测Zn2+和Cys/His
设计并合成了一种基于苯基丙氨酸衍生物和吲哚基团的简便双荧光化学传感器(7-IDF)。7-IDF对水溶液中Zn2+具有选择性和灵敏度,荧光增强明显。值得注意的是,具有蓝色发光的7-IDF-Zn配合物对半胱氨酸(Cys)和组氨酸(His)的选择性高于其他氨基酸。有趣的是,7-IDF也可以作为一种很好的探针来检测实际水样中的Zn2+。此外,7-IDF和7-IDF- zn具有良好的生物相容性和细胞渗透性,通过荧光成像实验,7-IDF可以连续检测到Hela细胞中的Zn2+和Cys/His。本研究表明,基于苯丙氨酸的化学传感器在生物系统中连续检测Zn2+和Cys/His具有很大的应用潜力。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JBIC Journal of Biological Inorganic Chemistry
JBIC Journal of Biological Inorganic Chemistry 化学-生化与分子生物学
CiteScore
5.90
自引率
3.30%
发文量
49
审稿时长
3 months
期刊介绍: Biological inorganic chemistry is a growing field of science that embraces the principles of biology and inorganic chemistry and impacts other fields ranging from medicine to the environment. JBIC (Journal of Biological Inorganic Chemistry) seeks to promote this field internationally. The Journal is primarily concerned with advances in understanding the role of metal ions within a biological matrix—be it a protein, DNA/RNA, or a cell, as well as appropriate model studies. Manuscripts describing high-quality original research on the above topics in English are invited for submission to this Journal. The Journal publishes original articles, minireviews, and commentaries on debated issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信