CO2 emissions and growth: A bivariate bidimensional mean-variance random effects model

IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Environmetrics Pub Date : 2023-02-11 DOI:10.1002/env.2793
Antonello Maruotti, Pierfrancesco Alaimo Di Loro
{"title":"CO2 emissions and growth: A bivariate bidimensional mean-variance random effects model","authors":"Antonello Maruotti,&nbsp;Pierfrancesco Alaimo Di Loro","doi":"10.1002/env.2793","DOIUrl":null,"url":null,"abstract":"<p>We introduce a bivariate bidimensional mixed-effects regression model, motivated by the analysis of <math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>CO</mtext>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{CO}}_2 $$</annotation>\n </semantics></math> emission levels and growth on OECD countries from 1990 to 2018. The model is able to capture heterogeneity across countries and allows for a full association structure among outcomes, assuming a discrete distribution for the random terms with a possibly different number of support points in each univariate profile. We test the behavior of the proposed approach via a simulation study, considering several factors such as the number of observed units, times, and levels of heterogeneity in the data. Empirically, we define an extended version of the STIRPAT model where all model parameters, and not only the mean, vary according to a regression model. Our empirical findings provide evidence of heterogeneous behaviors across countries and suggest the need of a flexible approach to properly reflect the heterogeneity in both the emission levels and the growth processes.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"34 5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2793","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2793","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

We introduce a bivariate bidimensional mixed-effects regression model, motivated by the analysis of CO 2 $$ {\mathrm{CO}}_2 $$ emission levels and growth on OECD countries from 1990 to 2018. The model is able to capture heterogeneity across countries and allows for a full association structure among outcomes, assuming a discrete distribution for the random terms with a possibly different number of support points in each univariate profile. We test the behavior of the proposed approach via a simulation study, considering several factors such as the number of observed units, times, and levels of heterogeneity in the data. Empirically, we define an extended version of the STIRPAT model where all model parameters, and not only the mean, vary according to a regression model. Our empirical findings provide evidence of heterogeneous behaviors across countries and suggest the need of a flexible approach to properly reflect the heterogeneity in both the emission levels and the growth processes.

Abstract Image

二氧化碳排放与增长:一个双变量二维均方差随机效应模型
我们引入了一个二元二维混合效应回归模型,基于对1990年至2018年经合组织国家二氧化碳排放水平和增长的分析。该模型能够捕捉各国的异质性,并允许在结果之间建立完整的关联结构,假设随机项的离散分布,每个单变量概况中的支持点数量可能不同。我们通过模拟研究测试了所提出方法的行为,考虑了几个因素,如观测单元的数量、时间和数据中的异质性水平。根据经验,我们定义了STIRPAT模型的扩展版本,其中所有模型参数,而不仅仅是平均值,都根据回归模型而变化。我们的实证研究结果为各国的异质性行为提供了证据,并表明需要一种灵活的方法来正确反映排放水平和增长过程中的异质性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信