An interpretable semi-supervised system for detecting cyberattacks using anomaly detection in industrial scenarios

IF 1.3 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Ángel Luis Perales Gómez, Lorenzo Fernández Maimó, Alberto Huertas Celdrán, Félix J. García Clemente
{"title":"An interpretable semi-supervised system for detecting cyberattacks using anomaly detection in industrial scenarios","authors":"Ángel Luis Perales Gómez,&nbsp;Lorenzo Fernández Maimó,&nbsp;Alberto Huertas Celdrán,&nbsp;Félix J. García Clemente","doi":"10.1049/ise2.12115","DOIUrl":null,"url":null,"abstract":"<p>When detecting cyberattacks in Industrial settings, it is not sufficient to determine whether the system is suffering a cyberattack. It is also fundamental to explain why the system is under a cyberattack and which are the assets affected. In this context, the Anomaly Detection based on Machine Learning (ML) and Deep Learning (DL) techniques showed great performance when detecting cyberattacks in industrial scenarios. However, two main limitations hinder using them in a real environment. Firstly, most solutions are trained using a supervised approach, which is impractical in the real industrial world. Secondly, the use of black-box ML and DL techniques makes it impossible to interpret the decision made by the model. This article proposes an interpretable and semi-supervised system to detect cyberattacks in Industrial settings. Besides, our proposal was validated using data collected from the Tennessee Eastman Process. To the best of our knowledge, this system is the only one that offers interpretability together with a semi-supervised approach in an industrial setting. Our system discriminates between causes and effects of anomalies and also achieved the best performance for 11 types of anomalies out of 20 with an overall recall of 0.9577, a precision of 0.9977, and a F1-score of 0.9711.</p>","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"17 4","pages":"553-566"},"PeriodicalIF":1.3000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ise2.12115","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ise2.12115","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

When detecting cyberattacks in Industrial settings, it is not sufficient to determine whether the system is suffering a cyberattack. It is also fundamental to explain why the system is under a cyberattack and which are the assets affected. In this context, the Anomaly Detection based on Machine Learning (ML) and Deep Learning (DL) techniques showed great performance when detecting cyberattacks in industrial scenarios. However, two main limitations hinder using them in a real environment. Firstly, most solutions are trained using a supervised approach, which is impractical in the real industrial world. Secondly, the use of black-box ML and DL techniques makes it impossible to interpret the decision made by the model. This article proposes an interpretable and semi-supervised system to detect cyberattacks in Industrial settings. Besides, our proposal was validated using data collected from the Tennessee Eastman Process. To the best of our knowledge, this system is the only one that offers interpretability together with a semi-supervised approach in an industrial setting. Our system discriminates between causes and effects of anomalies and also achieved the best performance for 11 types of anomalies out of 20 with an overall recall of 0.9577, a precision of 0.9977, and a F1-score of 0.9711.

Abstract Image

一种可解释的半监督系统,用于在工业场景中使用异常检测来检测网络攻击
在工业环境中检测网络攻击时,不足以确定系统是否遭受网络攻击。解释系统为什么受到网络攻击以及哪些资产受到影响也是至关重要的。在这种情况下,基于机器学习(ML)和深度学习(DL)技术的异常检测在检测工业场景中的网络攻击时表现出了良好的性能。然而,有两个主要限制阻碍了在真实环境中使用它们。首先,大多数解决方案都是使用监督方法进行训练的,这在现实工业世界中是不切实际的。其次,黑盒ML和DL技术的使用使得无法解释模型所做的决策。本文提出了一种可解释的半监督系统,用于检测工业环境中的网络攻击。此外,我们的建议还使用从田纳西-伊斯曼过程中收集的数据进行了验证。据我们所知,该系统是唯一一个在工业环境中提供可解释性和半监督方法的系统。我们的系统能够区分异常的原因和影响,在20种异常中,有11种异常表现最佳,总体召回率为0.9577,精度为0.9977,F1得分为0.9711。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Information Security
IET Information Security 工程技术-计算机:理论方法
CiteScore
3.80
自引率
7.10%
发文量
47
审稿时长
8.6 months
期刊介绍: IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls. Scope: Access Control and Database Security Ad-Hoc Network Aspects Anonymity and E-Voting Authentication Block Ciphers and Hash Functions Blockchain, Bitcoin (Technical aspects only) Broadcast Encryption and Traitor Tracing Combinatorial Aspects Covert Channels and Information Flow Critical Infrastructures Cryptanalysis Dependability Digital Rights Management Digital Signature Schemes Digital Steganography Economic Aspects of Information Security Elliptic Curve Cryptography and Number Theory Embedded Systems Aspects Embedded Systems Security and Forensics Financial Cryptography Firewall Security Formal Methods and Security Verification Human Aspects Information Warfare and Survivability Intrusion Detection Java and XML Security Key Distribution Key Management Malware Multi-Party Computation and Threshold Cryptography Peer-to-peer Security PKIs Public-Key and Hybrid Encryption Quantum Cryptography Risks of using Computers Robust Networks Secret Sharing Secure Electronic Commerce Software Obfuscation Stream Ciphers Trust Models Watermarking and Fingerprinting Special Issues. Current Call for Papers: Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信