Ángel Luis Perales Gómez, Lorenzo Fernández Maimó, Alberto Huertas Celdrán, Félix J. García Clemente
{"title":"An interpretable semi-supervised system for detecting cyberattacks using anomaly detection in industrial scenarios","authors":"Ángel Luis Perales Gómez, Lorenzo Fernández Maimó, Alberto Huertas Celdrán, Félix J. García Clemente","doi":"10.1049/ise2.12115","DOIUrl":null,"url":null,"abstract":"<p>When detecting cyberattacks in Industrial settings, it is not sufficient to determine whether the system is suffering a cyberattack. It is also fundamental to explain why the system is under a cyberattack and which are the assets affected. In this context, the Anomaly Detection based on Machine Learning (ML) and Deep Learning (DL) techniques showed great performance when detecting cyberattacks in industrial scenarios. However, two main limitations hinder using them in a real environment. Firstly, most solutions are trained using a supervised approach, which is impractical in the real industrial world. Secondly, the use of black-box ML and DL techniques makes it impossible to interpret the decision made by the model. This article proposes an interpretable and semi-supervised system to detect cyberattacks in Industrial settings. Besides, our proposal was validated using data collected from the Tennessee Eastman Process. To the best of our knowledge, this system is the only one that offers interpretability together with a semi-supervised approach in an industrial setting. Our system discriminates between causes and effects of anomalies and also achieved the best performance for 11 types of anomalies out of 20 with an overall recall of 0.9577, a precision of 0.9977, and a F1-score of 0.9711.</p>","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"17 4","pages":"553-566"},"PeriodicalIF":1.3000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ise2.12115","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ise2.12115","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
When detecting cyberattacks in Industrial settings, it is not sufficient to determine whether the system is suffering a cyberattack. It is also fundamental to explain why the system is under a cyberattack and which are the assets affected. In this context, the Anomaly Detection based on Machine Learning (ML) and Deep Learning (DL) techniques showed great performance when detecting cyberattacks in industrial scenarios. However, two main limitations hinder using them in a real environment. Firstly, most solutions are trained using a supervised approach, which is impractical in the real industrial world. Secondly, the use of black-box ML and DL techniques makes it impossible to interpret the decision made by the model. This article proposes an interpretable and semi-supervised system to detect cyberattacks in Industrial settings. Besides, our proposal was validated using data collected from the Tennessee Eastman Process. To the best of our knowledge, this system is the only one that offers interpretability together with a semi-supervised approach in an industrial setting. Our system discriminates between causes and effects of anomalies and also achieved the best performance for 11 types of anomalies out of 20 with an overall recall of 0.9577, a precision of 0.9977, and a F1-score of 0.9711.
期刊介绍:
IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls.
Scope:
Access Control and Database Security
Ad-Hoc Network Aspects
Anonymity and E-Voting
Authentication
Block Ciphers and Hash Functions
Blockchain, Bitcoin (Technical aspects only)
Broadcast Encryption and Traitor Tracing
Combinatorial Aspects
Covert Channels and Information Flow
Critical Infrastructures
Cryptanalysis
Dependability
Digital Rights Management
Digital Signature Schemes
Digital Steganography
Economic Aspects of Information Security
Elliptic Curve Cryptography and Number Theory
Embedded Systems Aspects
Embedded Systems Security and Forensics
Financial Cryptography
Firewall Security
Formal Methods and Security Verification
Human Aspects
Information Warfare and Survivability
Intrusion Detection
Java and XML Security
Key Distribution
Key Management
Malware
Multi-Party Computation and Threshold Cryptography
Peer-to-peer Security
PKIs
Public-Key and Hybrid Encryption
Quantum Cryptography
Risks of using Computers
Robust Networks
Secret Sharing
Secure Electronic Commerce
Software Obfuscation
Stream Ciphers
Trust Models
Watermarking and Fingerprinting
Special Issues. Current Call for Papers:
Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf