Atomistic simulations of nucleation and growth of CaCO3 with the influence of inhibitors: A review

Yue Li, Hongbo Zeng, Hao Zhang
{"title":"Atomistic simulations of nucleation and growth of CaCO3 with the influence of inhibitors: A review","authors":"Yue Li, Hongbo Zeng, Hao Zhang","doi":"10.1002/mgea.4","DOIUrl":null,"url":null,"abstract":"Calcium carbonate (CaCO3) is a crucial mineral with great scientific relevance in biomineralization and geoscience. However, excessive precipitation of CaCO3 is posing a threat to industrial production and the aquatic environment. The utilization of chemical inhibitors is typically considered an economical and successful route for addressing the scaling issues, while the underlying mechanism is still debated and needs to be further investigated. In this context, a deep understanding of the crystallization process of CaCO3 and how the inhibitors interact with CaCO3 nuclei and crystals are of great significance in evaluating the performance of scale inhibitors. In recent years, with the rapid development of computing facilities, computer simulations have provided an atomic‐level perspective on the kinetics and thermodynamics of possible association events in CaCO3 solutions as well as the predictions of nucleation pathway and growth mechanism of CaCO3 crystals as a complement to experiment. This review surveys several computational methods and their achievements in this field with a focus on analyzing the functional mechanisms of different types of inhibitors. A general discussion of the current challenges and future directions in applying atomistic simulations to the discovery, design, and development of more effective water‐scale inhibitors is also discussed.","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.4","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Calcium carbonate (CaCO3) is a crucial mineral with great scientific relevance in biomineralization and geoscience. However, excessive precipitation of CaCO3 is posing a threat to industrial production and the aquatic environment. The utilization of chemical inhibitors is typically considered an economical and successful route for addressing the scaling issues, while the underlying mechanism is still debated and needs to be further investigated. In this context, a deep understanding of the crystallization process of CaCO3 and how the inhibitors interact with CaCO3 nuclei and crystals are of great significance in evaluating the performance of scale inhibitors. In recent years, with the rapid development of computing facilities, computer simulations have provided an atomic‐level perspective on the kinetics and thermodynamics of possible association events in CaCO3 solutions as well as the predictions of nucleation pathway and growth mechanism of CaCO3 crystals as a complement to experiment. This review surveys several computational methods and their achievements in this field with a focus on analyzing the functional mechanisms of different types of inhibitors. A general discussion of the current challenges and future directions in applying atomistic simulations to the discovery, design, and development of more effective water‐scale inhibitors is also discussed.

Abstract Image

抑制剂影响下CaCO3成核和生长的原子模拟:综述
碳酸钙(CaCO3)是一种重要的矿物,在生物矿化和地球科学中具有重要的科学意义。然而,CaCO3的过度沉淀对工业生产和水环境构成了威胁。化学抑制剂的使用通常被认为是解决结垢问题的一种经济而成功的途径,而其潜在机制仍有争议,需要进一步研究。在这种情况下,深入了解CaCO3的结晶过程以及抑制剂如何与CaCO3核和晶体相互作用,对于评估阻垢剂的性能具有重要意义。近年来,随着计算设备的快速发展,计算机模拟为CaCO3溶液中可能的缔合事件的动力学和热力学提供了原子水平的视角,并预测了CaCO3晶体的成核途径和生长机制,作为实验的补充。本文综述了该领域的几种计算方法及其成就,重点分析了不同类型抑制剂的作用机制。还讨论了将原子模拟应用于更有效的阻垢剂的发现、设计和开发的当前挑战和未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信