Koszul–Tate resolutions as cofibrant replacements of algebras over differential operators

IF 0.5 4区 数学
Gennaro di Brino, Damjan Pištalo, Norbert Poncin
{"title":"Koszul–Tate resolutions as cofibrant replacements of algebras over differential operators","authors":"Gennaro di Brino,&nbsp;Damjan Pištalo,&nbsp;Norbert Poncin","doi":"10.1007/s40062-018-0202-x","DOIUrl":null,"url":null,"abstract":"<p>Homotopical geometry over differential operators is a convenient setting for a coordinate-free investigation of nonlinear partial differential equations modulo symmetries. One of the first issues one meets in the functor of points approach to homotopical <span>\\({{{\\mathcal {D}}}}\\)</span>-geometry, is the question of a model structure on the category <span>\\({\\mathtt{DGAlg({{{\\mathcal {D}}}})}}\\)</span> of differential non-negatively graded <span>\\({{{\\mathcal {O}}}}\\)</span>-quasi-coherent sheaves of commutative algebras over the sheaf <span>\\({{{\\mathcal {D}}}}\\)</span> of differential operators of an appropriate underlying variety <span>\\((X,{{{\\mathcal {O}}}})\\)</span>. We define a cofibrantly generated model structure on <span>\\({\\mathtt{DGAlg({{{\\mathcal {D}}}})}}\\)</span> via the definition of its weak equivalences and its fibrations, characterize the class of cofibrations, and build an explicit functorial ‘cofibration–trivial fibration’ factorization. We then use the latter to get a functorial model categorical Koszul–Tate resolution for <span>\\({{{\\mathcal {D}}}}\\)</span>-algebraic ‘on-shell function’ algebras (which contains the classical Koszul–Tate resolution). The paper is also the starting point for a homotopical <span>\\({{{\\mathcal {D}}}}\\)</span>-geometric Batalin–Vilkovisky formalism.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"13 4","pages":"793 - 846"},"PeriodicalIF":0.5000,"publicationDate":"2018-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-018-0202-x","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-018-0202-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Homotopical geometry over differential operators is a convenient setting for a coordinate-free investigation of nonlinear partial differential equations modulo symmetries. One of the first issues one meets in the functor of points approach to homotopical \({{{\mathcal {D}}}}\)-geometry, is the question of a model structure on the category \({\mathtt{DGAlg({{{\mathcal {D}}}})}}\) of differential non-negatively graded \({{{\mathcal {O}}}}\)-quasi-coherent sheaves of commutative algebras over the sheaf \({{{\mathcal {D}}}}\) of differential operators of an appropriate underlying variety \((X,{{{\mathcal {O}}}})\). We define a cofibrantly generated model structure on \({\mathtt{DGAlg({{{\mathcal {D}}}})}}\) via the definition of its weak equivalences and its fibrations, characterize the class of cofibrations, and build an explicit functorial ‘cofibration–trivial fibration’ factorization. We then use the latter to get a functorial model categorical Koszul–Tate resolution for \({{{\mathcal {D}}}}\)-algebraic ‘on-shell function’ algebras (which contains the classical Koszul–Tate resolution). The paper is also the starting point for a homotopical \({{{\mathcal {D}}}}\)-geometric Batalin–Vilkovisky formalism.

Abstract Image

微分算子上代数的协替换
微分算子上的同局部几何是研究非线性偏微分方程模对称性的一种方便的无坐标设置。在同局部\({{{\mathcal {D}}}}\) -几何的点函子方法中,我们遇到的第一个问题是:在适当的底层变异\((X,{{{\mathcal {O}}}})\)的微分算子\({{{\mathcal {D}}}}\)的对易代数的微分非负渐变\({{{\mathcal {O}}}}\) -拟相干束的范畴\({\mathtt{DGAlg({{{\mathcal {D}}}})}}\)上的模型结构问题。通过对其弱等价和纤颤的定义,在\({\mathtt{DGAlg({{{\mathcal {D}}}})}}\)上定义了一个纤颤生成的模型结构,表征了纤颤的类别,并建立了一个显式的功能“纤颤-平凡纤颤”分解。然后,我们使用后者来获得\({{{\mathcal {D}}}}\) -代数“壳上函数”代数(其中包含经典的Koszul-Tate分辨率)的功能模型分类Koszul-Tate分辨率。本文也是一个同局部\({{{\mathcal {D}}}}\) -几何Batalin-Vilkovisky形式主义的起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信