Electrical treeing phenomena in two-layer silicone gel with different crosslinking degrees and its dielectric strength

IF 0.4 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Risa Kuroda, Hyeon-Gu Jeon, Haruo Ihori
{"title":"Electrical treeing phenomena in two-layer silicone gel with different crosslinking degrees and its dielectric strength","authors":"Risa Kuroda,&nbsp;Hyeon-Gu Jeon,&nbsp;Haruo Ihori","doi":"10.1002/eej.23437","DOIUrl":null,"url":null,"abstract":"<p>Silicone gel is widely used to encapsulate power modules, and improvement of its dielectric strength has been required. So, the purpose of our research is to improve dielectric strength of silicone gel encapsulant, and we focus on crosslinking degree of silicone gel. Previous studies have shown that growth mechanism of electrical tree changes with crosslinking degree of silicone gel. This suggests the possibility that the presence of the interface by different crosslinking degrees inhibits the tree growth. In this paper, we have investigated the tree growth and breakdown characteristics in silicone gel—crosslinking degrees graded layer materials. The interfaces in our study are arrange as being vertical to the line of electric force. Consequently, it was clarified that barrier effect of interface by different crosslinking degrees and the relaxation of electric field in low crosslinking degree region retards on tree growth, which improves the dielectric strength.</p>","PeriodicalId":50550,"journal":{"name":"Electrical Engineering in Japan","volume":"216 3","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Engineering in Japan","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eej.23437","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Silicone gel is widely used to encapsulate power modules, and improvement of its dielectric strength has been required. So, the purpose of our research is to improve dielectric strength of silicone gel encapsulant, and we focus on crosslinking degree of silicone gel. Previous studies have shown that growth mechanism of electrical tree changes with crosslinking degree of silicone gel. This suggests the possibility that the presence of the interface by different crosslinking degrees inhibits the tree growth. In this paper, we have investigated the tree growth and breakdown characteristics in silicone gel—crosslinking degrees graded layer materials. The interfaces in our study are arrange as being vertical to the line of electric force. Consequently, it was clarified that barrier effect of interface by different crosslinking degrees and the relaxation of electric field in low crosslinking degree region retards on tree growth, which improves the dielectric strength.

不同交联度双层硅胶的电树枝现象及其介电强度
硅胶被广泛用于封装功率模块,需要提高其介电强度。因此,我们的研究目的是提高硅胶封装剂的介电强度,重点研究了硅胶的交联度。先前的研究表明,电树的生长机制随着硅胶的交联度而变化。这表明界面的存在通过不同的交联程度抑制树木生长的可能性。本文研究了硅凝胶交联度梯度层材料中树木的生长和分解特性。在我们的研究中,界面被安排为垂直于电力线。结果表明,不同交联度的界面阻挡效应和低交联度区域电场的弛豫阻碍了树木的生长,从而提高了介电强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrical Engineering in Japan
Electrical Engineering in Japan 工程技术-工程:电子与电气
CiteScore
0.80
自引率
0.00%
发文量
51
审稿时长
4-8 weeks
期刊介绍: Electrical Engineering in Japan (EEJ) is an official journal of the Institute of Electrical Engineers of Japan (IEEJ). This authoritative journal is a translation of the Transactions of the Institute of Electrical Engineers of Japan. It publishes 16 issues a year on original research findings in Electrical Engineering with special focus on the science, technology and applications of electric power, such as power generation, transmission and conversion, electric railways (including magnetic levitation devices), motors, switching, power economics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信