{"title":"Predicting base station return on investment in the telecommunications industry: Machine-learning approaches","authors":"Cihan Şahin","doi":"10.1002/isaf.1530","DOIUrl":null,"url":null,"abstract":"<p>Investment in the right location ensures sustainable competition. In the telecommunication sector, the number of base stations (BSs) is one of the most significant investment parameters. When a potential BS is subject to be selected, practitioners will first consider investing in a BS where the return on investment (ROI) is highest. Therefore, the quantifiable objectives are distinctly defined, as it makes sense to choose maximizing features that raise per unit investment. This study provides a solution to evaluate the best BS installation alternative with machine-learning approaches as well as to estimate ROI value by changing the properties that affect the ROI value. For this purpose, the estimation performance of logistic regression, random forest, and XGBoost methods are compared and further strengthened by random forest hyperparameter optimization to provide the best performance. The model, with a success rate of 98.7% according to the \n<math>\n <mi>F</mi></math>-score, showed that it was a robust algorithm. The three most essential features for the ROI value are determined to be voice traffic, data traffic, and frequency cost. These parameters enable a review of the prediction results of telecommunications managers and planning specialists responsible for BS investment.</p>","PeriodicalId":53473,"journal":{"name":"Intelligent Systems in Accounting, Finance and Management","volume":"30 1","pages":"29-40"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems in Accounting, Finance and Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0
Abstract
Investment in the right location ensures sustainable competition. In the telecommunication sector, the number of base stations (BSs) is one of the most significant investment parameters. When a potential BS is subject to be selected, practitioners will first consider investing in a BS where the return on investment (ROI) is highest. Therefore, the quantifiable objectives are distinctly defined, as it makes sense to choose maximizing features that raise per unit investment. This study provides a solution to evaluate the best BS installation alternative with machine-learning approaches as well as to estimate ROI value by changing the properties that affect the ROI value. For this purpose, the estimation performance of logistic regression, random forest, and XGBoost methods are compared and further strengthened by random forest hyperparameter optimization to provide the best performance. The model, with a success rate of 98.7% according to the
-score, showed that it was a robust algorithm. The three most essential features for the ROI value are determined to be voice traffic, data traffic, and frequency cost. These parameters enable a review of the prediction results of telecommunications managers and planning specialists responsible for BS investment.
期刊介绍:
Intelligent Systems in Accounting, Finance and Management is a quarterly international journal which publishes original, high quality material dealing with all aspects of intelligent systems as they relate to the fields of accounting, economics, finance, marketing and management. In addition, the journal also is concerned with related emerging technologies, including big data, business intelligence, social media and other technologies. It encourages the development of novel technologies, and the embedding of new and existing technologies into applications of real, practical value. Therefore, implementation issues are of as much concern as development issues. The journal is designed to appeal to academics in the intelligent systems, emerging technologies and business fields, as well as to advanced practitioners who wish to improve the effectiveness, efficiency, or economy of their working practices. A special feature of the journal is the use of two groups of reviewers, those who specialize in intelligent systems work, and also those who specialize in applications areas. Reviewers are asked to address issues of originality and actual or potential impact on research, teaching, or practice in the accounting, finance, or management fields. Authors working on conceptual developments or on laboratory-based explorations of data sets therefore need to address the issue of potential impact at some level in submissions to the journal.