Angela Ferretti, L. Ippoliti, P. Valentini, R. J. Bhansali
{"title":"Long memory conditional random fields on regular lattices","authors":"Angela Ferretti, L. Ippoliti, P. Valentini, R. J. Bhansali","doi":"10.1002/env.2817","DOIUrl":null,"url":null,"abstract":"<p>This paper draws its motivation from applications in geophysics, agricultural, and environmental sciences where empirical evidence of slow decay of correlations have been found for data observed on a regular lattice. Spatial ARFIMA models represent a widely used class of spatial models for analyzing such data. Here, we consider their generalization to conditional autoregressive fractional integrated moving average (CARFIMA) models, a larger class of long memory models which allows a wider range of correlation behavior. For this class we provide detailed descriptions of important representative models, make the necessary comparison with some other existing models, and discuss some important inferential and computational issues on estimation, simulation and long memory process approximation. Results from model fit comparison and predictive performance of CARFIMA models are also discussed through a statistical analysis of satellite land surface temperature data.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"34 5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2817","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2817","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This paper draws its motivation from applications in geophysics, agricultural, and environmental sciences where empirical evidence of slow decay of correlations have been found for data observed on a regular lattice. Spatial ARFIMA models represent a widely used class of spatial models for analyzing such data. Here, we consider their generalization to conditional autoregressive fractional integrated moving average (CARFIMA) models, a larger class of long memory models which allows a wider range of correlation behavior. For this class we provide detailed descriptions of important representative models, make the necessary comparison with some other existing models, and discuss some important inferential and computational issues on estimation, simulation and long memory process approximation. Results from model fit comparison and predictive performance of CARFIMA models are also discussed through a statistical analysis of satellite land surface temperature data.
期刊介绍:
Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences.
The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.