Jun Wang, Wan-Ting He, Cong-Wei Lu, Yang-Yang Wang, Qing Ai, Hai-Bo Wang
{"title":"Controlled-NOT Gate Based on the Rydberg States of Surface Electrons","authors":"Jun Wang, Wan-Ting He, Cong-Wei Lu, Yang-Yang Wang, Qing Ai, Hai-Bo Wang","doi":"10.1002/andp.202300138","DOIUrl":null,"url":null,"abstract":"<p>Due to the long coherence time and efficient manipulation, the surface electron (SE) provides a perfect 2D platform for quantum computation and quantum simulation. In this work, a theoretical scheme to realize the controlled-NOT gate is proposed, where the two-qubit system is encoded on the four-level Rydberg structure of SE. The state transfer is achieved by a three-level structure with an intermediate level. By simultaneously driving the SE with two external electromagnetic fields, the dark state in the electromagnetically induced transparency effect is exploited to suppress the population of the most dissipative state and increase the robustness against dissipation. The fidelity of the scheme is 0.9989 with experimentally achievable parameters.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"535 10","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202300138","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Due to the long coherence time and efficient manipulation, the surface electron (SE) provides a perfect 2D platform for quantum computation and quantum simulation. In this work, a theoretical scheme to realize the controlled-NOT gate is proposed, where the two-qubit system is encoded on the four-level Rydberg structure of SE. The state transfer is achieved by a three-level structure with an intermediate level. By simultaneously driving the SE with two external electromagnetic fields, the dark state in the electromagnetically induced transparency effect is exploited to suppress the population of the most dissipative state and increase the robustness against dissipation. The fidelity of the scheme is 0.9989 with experimentally achievable parameters.
期刊介绍:
Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.