Controlled-NOT Gate Based on the Rydberg States of Surface Electrons

IF 2.2 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Jun Wang, Wan-Ting He, Cong-Wei Lu, Yang-Yang Wang, Qing Ai, Hai-Bo Wang
{"title":"Controlled-NOT Gate Based on the Rydberg States of Surface Electrons","authors":"Jun Wang,&nbsp;Wan-Ting He,&nbsp;Cong-Wei Lu,&nbsp;Yang-Yang Wang,&nbsp;Qing Ai,&nbsp;Hai-Bo Wang","doi":"10.1002/andp.202300138","DOIUrl":null,"url":null,"abstract":"<p>Due to the long coherence time and efficient manipulation, the surface electron (SE) provides a perfect 2D platform for quantum computation and quantum simulation. In this work, a theoretical scheme to realize the controlled-NOT gate is proposed, where the two-qubit system is encoded on the four-level Rydberg structure of SE. The state transfer is achieved by a three-level structure with an intermediate level. By simultaneously driving the SE with two external electromagnetic fields, the dark state in the electromagnetically induced transparency effect is exploited to suppress the population of the most dissipative state and increase the robustness against dissipation. The fidelity of the scheme is 0.9989 with experimentally achievable parameters.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"535 10","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202300138","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Due to the long coherence time and efficient manipulation, the surface electron (SE) provides a perfect 2D platform for quantum computation and quantum simulation. In this work, a theoretical scheme to realize the controlled-NOT gate is proposed, where the two-qubit system is encoded on the four-level Rydberg structure of SE. The state transfer is achieved by a three-level structure with an intermediate level. By simultaneously driving the SE with two external electromagnetic fields, the dark state in the electromagnetically induced transparency effect is exploited to suppress the population of the most dissipative state and increase the robustness against dissipation. The fidelity of the scheme is 0.9989 with experimentally achievable parameters.

Abstract Image

基于表面电子里德伯态的受控非门
由于长相干时间和高效的操作,表面电子(SE)为量子计算和量子模拟提供了一个完美的二维平台。本文提出了一种实现受控非门的理论方案,其中两个量子位系统被编码在SE的四能级里德堡结构上。状态转移通过具有中间能级的三能级结构来实现。通过用两个外部电磁场同时驱动SE,利用电磁感应透明效应中的暗态来抑制最具耗散状态的种群,并提高对耗散的鲁棒性。该方案的保真度为0.9989,具有实验可实现的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annalen der Physik
Annalen der Physik 物理-物理:综合
CiteScore
4.50
自引率
8.30%
发文量
202
审稿时长
3 months
期刊介绍: Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信