Bayesian geostatistical modeling for discrete-valued processes

IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Environmetrics Pub Date : 2023-06-02 DOI:10.1002/env.2805
Xiaotian Zheng, Athanasios Kottas, Bruno Sansó
{"title":"Bayesian geostatistical modeling for discrete-valued processes","authors":"Xiaotian Zheng,&nbsp;Athanasios Kottas,&nbsp;Bruno Sansó","doi":"10.1002/env.2805","DOIUrl":null,"url":null,"abstract":"<p>We introduce a flexible and scalable class of Bayesian geostatistical models for discrete data, based on nearest-neighbor mixture processes (NNMP), referred to as discrete NNMP. To define the joint probability mass function (pmf) over a set of spatial locations, we build from local mixtures of conditional pmfs using a directed graphical model, with a directed acyclic graph that summarizes the nearest neighbor structure. The approach supports direct, flexible modeling for multivariate dependence through specification of general bivariate discrete distributions that define the conditional pmfs. In particular, we develop a modeling and inferential framework for copula-based NNMPs that can attain flexible dependence structures, motivating the use of bivariate copula families for spatial processes. Moreover, the framework allows for construction of models given a pre-specified family of marginal distributions that can vary in space, facilitating covariate inclusion. Compared to the traditional class of spatial generalized linear mixed models, where spatial dependence is introduced through a transformation of response means, our process-based modeling approach provides both computational and inferential advantages. We illustrate the methodology with synthetic data examples and an analysis of North American Breeding Bird Survey data.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"34 7","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2805","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2805","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

We introduce a flexible and scalable class of Bayesian geostatistical models for discrete data, based on nearest-neighbor mixture processes (NNMP), referred to as discrete NNMP. To define the joint probability mass function (pmf) over a set of spatial locations, we build from local mixtures of conditional pmfs using a directed graphical model, with a directed acyclic graph that summarizes the nearest neighbor structure. The approach supports direct, flexible modeling for multivariate dependence through specification of general bivariate discrete distributions that define the conditional pmfs. In particular, we develop a modeling and inferential framework for copula-based NNMPs that can attain flexible dependence structures, motivating the use of bivariate copula families for spatial processes. Moreover, the framework allows for construction of models given a pre-specified family of marginal distributions that can vary in space, facilitating covariate inclusion. Compared to the traditional class of spatial generalized linear mixed models, where spatial dependence is introduced through a transformation of response means, our process-based modeling approach provides both computational and inferential advantages. We illustrate the methodology with synthetic data examples and an analysis of North American Breeding Bird Survey data.

Abstract Image

离散值过程的贝叶斯地质统计学建模
我们介绍了一类灵活且可扩展的离散数据贝叶斯地质统计模型,该模型基于最近邻混合过程(NNMP),称为离散NNMP。为了定义一组空间位置上的联合概率质量函数(pmf),我们使用有向图形模型从条件pmf的局部混合中构建,其中有向非循环图总结了最近邻结构。该方法通过指定定义条件pmf的一般二元离散分布,支持对多变量相关性进行直接、灵活的建模。特别是,我们为基于copula的NNMP开发了一个建模和推理框架,该框架可以获得灵活的依赖结构,从而促进了对空间过程使用双变量copula族。此外,该框架允许在给定一个预先指定的边缘分布族的情况下构建模型,该分布族可以在空间上变化,从而促进协变量的包含。与传统的一类空间广义线性混合模型相比,我们的基于过程的建模方法提供了计算和推理的优势。我们通过综合数据示例和对北美繁殖鸟类调查数据的分析来说明该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信