A Refinement of the First Eigenvalue and Eigenfunction of the Linearized Moser-Trudinger Problem

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Kefan Pan, Jing Yang
{"title":"A Refinement of the First Eigenvalue and Eigenfunction of the Linearized Moser-Trudinger Problem","authors":"Kefan Pan,&nbsp;Jing Yang","doi":"10.1007/s10440-023-00603-4","DOIUrl":null,"url":null,"abstract":"<div><p>We revisit the following Moser-Trudinger problem </p><div><div><span>$$ \\textstyle\\begin{cases} -\\Delta u=\\lambda ue^{u^{2}} &amp;\\text{in } \\Omega , \\\\ u&gt;0&amp;\\text{in } \\Omega , \\\\ u=0 &amp;\\text{on } \\partial \\Omega , \\end{cases} $$</span></div></div><p> where <span>\\(\\Omega \\subset \\mathbb{R}^{2}\\)</span> is a smooth bounded domain and <span>\\(\\lambda &gt;0\\)</span> is sufficiently small. Qualitative analysis of peaked solutions for Moser-Trudinger type equation in <span>\\(\\mathbb{R}^{2}\\)</span> has been widely studied in recent decades. In this paper, we continue to consider the qualitative properties of the eigenvalues and eigenfunctions for the corresponding linearized Moser-Trudinger problem by using a variety of local Pohozaev identities combined with some elliptic theory in dimension two. Here we give some fine estimates for the first eigenvalue and eigenfunction of the linearized Moser-Trudinger problem. Since this problem is a critical exponent for dimension two and will lose compactness, we have to obtain some new and technical estimates.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"187 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-023-00603-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We revisit the following Moser-Trudinger problem

$$ \textstyle\begin{cases} -\Delta u=\lambda ue^{u^{2}} &\text{in } \Omega , \\ u>0&\text{in } \Omega , \\ u=0 &\text{on } \partial \Omega , \end{cases} $$

where \(\Omega \subset \mathbb{R}^{2}\) is a smooth bounded domain and \(\lambda >0\) is sufficiently small. Qualitative analysis of peaked solutions for Moser-Trudinger type equation in \(\mathbb{R}^{2}\) has been widely studied in recent decades. In this paper, we continue to consider the qualitative properties of the eigenvalues and eigenfunctions for the corresponding linearized Moser-Trudinger problem by using a variety of local Pohozaev identities combined with some elliptic theory in dimension two. Here we give some fine estimates for the first eigenvalue and eigenfunction of the linearized Moser-Trudinger problem. Since this problem is a critical exponent for dimension two and will lose compactness, we have to obtain some new and technical estimates.

线性化Moser-Trudinger问题的第一特征值和特征函数的精化
我们重新审视下面的Moser-Trudinger问题$$\textstyle\begon{cases}-\Delta u=\lambda u^{u^}2}}&;\text{in}\Omega,\\u>;0&;\text{in}\Omega,\\u=0&;\text{on}\partial\Omega,\end{cases}$$其中\(\Omega\subet\mathbb{R}^{2}\)是一个光滑有界域,\(\lambda>;0\)足够小。近几十年来,对(\mathbb{R}^{2})中Moser-Trudinger型方程峰值解的定性分析得到了广泛的研究。在本文中,我们利用各种局部Pohozaev恒等式和一些二维椭圆理论,继续考虑相应线性化Moser-Trudinger问题的本征值和本征函数的定性性质。本文给出了线性化Moser-Trudinger问题的第一特征值和本征函数的一些精细估计。由于这个问题是二维的一个临界指数,并且会失去紧致性,我们必须获得一些新的技术估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信