An interior-point algorithm for semidefinite least-squares problems

Pub Date : 2021-10-20 DOI:10.21136/AM.2021.0217-20
Chafia Daili, Mohamed Achache
{"title":"An interior-point algorithm for semidefinite least-squares problems","authors":"Chafia Daili,&nbsp;Mohamed Achache","doi":"10.21136/AM.2021.0217-20","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a feasible primal-dual path-following interior-point algorithm for semidefinite least squares problems (SDLS). At each iteration, the algorithm uses only full Nesterov-Todd steps with the advantage that no line search is required. Under new appropriate choices of the parameter <i>β</i> which defines the size of the neighborhood of the central-path and of the parameter <i>θ</i> which determines the rate of decrease of the barrier parameter, we show that the proposed algorithm is well defined and converges to the optimal solution of SDLS. Moreover, we obtain the currently best known iteration bound for the algorithm with a short-update method, namely, <span>\\({\\cal O}(\\sqrt n \\log (n/\\varepsilon))\\)</span>. Finally, we report some numerical results to illustrate the efficiency of our proposed algorithm.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2021.0217-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a feasible primal-dual path-following interior-point algorithm for semidefinite least squares problems (SDLS). At each iteration, the algorithm uses only full Nesterov-Todd steps with the advantage that no line search is required. Under new appropriate choices of the parameter β which defines the size of the neighborhood of the central-path and of the parameter θ which determines the rate of decrease of the barrier parameter, we show that the proposed algorithm is well defined and converges to the optimal solution of SDLS. Moreover, we obtain the currently best known iteration bound for the algorithm with a short-update method, namely, \({\cal O}(\sqrt n \log (n/\varepsilon))\). Finally, we report some numerical results to illustrate the efficiency of our proposed algorithm.

分享
查看原文
半定最小二乘问题的内点算法
针对半定最小二乘问题,提出了一种可行的原对偶路径跟随内点算法。在每次迭代中,该算法只使用完整的Nesterov-Todd步骤,其优点是不需要行搜索。在定义中心路径邻域大小的参数β和确定屏障参数下降率的参数θ的新的适当选择下,我们证明了所提出的算法是定义良好的,并且收敛于SDLS的最优解。此外,我们用一个短更新方法获得了该算法目前最已知的迭代边界,即\({\cal O}(\sqrt n\log(n/\varepsilon))\)。最后,我们报告了一些数值结果来说明我们提出的算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信