Normality of algebras over commutative rings and the Teichmüller class. I.

IF 0.5 4区 数学
Johannes Huebschmann
{"title":"Normality of algebras over commutative rings and the Teichmüller class. I.","authors":"Johannes Huebschmann","doi":"10.1007/s40062-017-0173-3","DOIUrl":null,"url":null,"abstract":"<p>Let <i>S</i> be a commutative ring and <i>Q</i> a group that acts on <i>S</i> by ring automorphisms. Given an <i>S</i>-algebra endowed with an outer action of <i>Q</i>, we study the associated Teichmüller class in the appropriate third group cohomology group. We extend the classical results to this general setting. Somewhat more specifically, let <i>R</i> denote the subring of <i>S</i> that is fixed under <i>Q</i>. A <i>Q</i>-<i>normal</i>\n<i>S</i>-algebra consists of a central <i>S</i>-algebra <i>A</i> and a homomorphism <span>\\(\\sigma :Q\\rightarrow \\mathop {\\mathrm{Out}}\\nolimits (A)\\)</span> into the group <span>\\(\\mathop {\\mathrm{Out}}\\nolimits (A)\\)</span> of outer automorphisms of <i>A</i> that lifts the action of <i>Q</i> on <i>S</i>. With respect to the abelian group <span>\\(\\mathrm {U}(S)\\)</span> of invertible elements of <i>S</i>, endowed with the <i>Q</i>-module structure coming from the <i>Q</i>-action on <i>S</i>, we associate to a <i>Q</i>-normal <i>S</i>-algebra <span>\\((A, \\sigma )\\)</span> a crossed?2-fold extension <span>\\(\\mathrm {e}_{(A, \\sigma )}\\)</span> starting at <span>\\(\\mathrm {U}(S)\\)</span> and ending at <i>Q</i>, the <i>Teichmüller complex</i> of <span>\\((A, \\sigma )\\)</span>, and this complex, in turn, represents a class, the <i>Teichmüller class</i> of <span>\\((A, \\sigma )\\)</span>, in the third group cohomology group <span>\\(\\mathrm {H}^3(Q,\\mathrm {U}(S))\\)</span> of <i>Q</i> with coefficients in <span>\\(\\mathrm {U}(S)\\)</span>. We extend some of the classical results to this general setting. Among others, we relate the Teichmüller cocycle map with the generalized Deuring embedding problem and develop a seven term exact sequence involving suitable generalized Brauer groups and the generalized Teichmüller cocycle map. We also relate the generalized Teichmüller cocycle map with a suitably defined abelian group <img> of classes of representations of <i>Q</i> in the <i>Q</i>-graded Brauer category <img> of <i>S</i> with respect to the given action of <i>Q</i> on <i>S</i>.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"13 1","pages":"1 - 70"},"PeriodicalIF":0.5000,"publicationDate":"2017-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-017-0173-3","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-017-0173-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Let S be a commutative ring and Q a group that acts on S by ring automorphisms. Given an S-algebra endowed with an outer action of Q, we study the associated Teichmüller class in the appropriate third group cohomology group. We extend the classical results to this general setting. Somewhat more specifically, let R denote the subring of S that is fixed under Q. A Q-normal S-algebra consists of a central S-algebra A and a homomorphism \(\sigma :Q\rightarrow \mathop {\mathrm{Out}}\nolimits (A)\) into the group \(\mathop {\mathrm{Out}}\nolimits (A)\) of outer automorphisms of A that lifts the action of Q on S. With respect to the abelian group \(\mathrm {U}(S)\) of invertible elements of S, endowed with the Q-module structure coming from the Q-action on S, we associate to a Q-normal S-algebra \((A, \sigma )\) a crossed?2-fold extension \(\mathrm {e}_{(A, \sigma )}\) starting at \(\mathrm {U}(S)\) and ending at Q, the Teichmüller complex of \((A, \sigma )\), and this complex, in turn, represents a class, the Teichmüller class of \((A, \sigma )\), in the third group cohomology group \(\mathrm {H}^3(Q,\mathrm {U}(S))\) of Q with coefficients in \(\mathrm {U}(S)\). We extend some of the classical results to this general setting. Among others, we relate the Teichmüller cocycle map with the generalized Deuring embedding problem and develop a seven term exact sequence involving suitable generalized Brauer groups and the generalized Teichmüller cocycle map. We also relate the generalized Teichmüller cocycle map with a suitably defined abelian group of classes of representations of Q in the Q-graded Brauer category of S with respect to the given action of Q on S.

交换环上代数的正态性及teichmller类。我。
设S是一个交换环,Q是一个通过环自同构作用于S的群。给定一个具有外作用Q的s代数,研究了相应的第三群上同群上的相关teichmller类。我们把经典的结果推广到一般情况下。更具体地说,设R表示固定在Q下的S的子代数。一个Q-正规-代数由一个中心S代数A和一个在提升Q对S的作用的A的外部自同构群\(\mathop {\mathrm{Out}}\nolimits (A)\)中的同态\(\sigma :Q\rightarrow \mathop {\mathrm{Out}}\nolimits (A)\)组成。对于S的可逆元素的阿贝尔群\(\mathrm {U}(S)\),赋予来自于S上的Q作用的Q模结构,我们将其与一个Q-正规- S代数\((A, \sigma )\) A与?2倍扩展\(\mathrm {e}_{(A, \sigma )}\)开始于\(\mathrm {U}(S)\),结束于Q,这就是\((A, \sigma )\)的teichm ller复合体,而这个复合体又代表了一个类,\((A, \sigma )\)的teichm ller类,它在Q的第三群上同调群\(\mathrm {H}^3(Q,\mathrm {U}(S))\)中,系数在\(\mathrm {U}(S)\)。我们将一些经典的结果推广到这种一般情况下。其中,我们将teichm循环映射与广义Deuring嵌入问题联系起来,并建立了一个包含合适的广义Brauer群和广义teichm循环映射的七项精确序列。我们还将广义的teichm循环映射与S的Q阶Brauer范畴中Q的表示类的适当定义的阿贝尔群联系起来,并考虑到Q对S的给定作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信