Differential flatness-based distributed control of underactuated robot swarms

IF 4.5 2区 工程技术 Q1 MATHEMATICS, APPLIED
Ningbo An, Qishao Wang, Xiaochuan Zhao, Qingyun Wang
{"title":"Differential flatness-based distributed control of underactuated robot swarms","authors":"Ningbo An,&nbsp;Qishao Wang,&nbsp;Xiaochuan Zhao,&nbsp;Qingyun Wang","doi":"10.1007/s10483-023-3040-8","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a distributed control method based on the differential flatness (DF) property of robot swarms. The swarm DF mapping is established for underactuated differentially flat dynamics, according to the control objective. The DF mapping refers to the fact that the system state and input of each robot can be derived algebraically from the flat outputs of the leaders and the cooperative errors and their finite order derivatives. Based on the proposed swarm DF mapping, a distributed controller is designed. The distributed implementation of swarm DF mapping is achieved through observer design. The effectiveness of the proposed method is validated through a numerical simulation of quadrotor swarm synchronization.</p></div>","PeriodicalId":55498,"journal":{"name":"Applied Mathematics and Mechanics-English Edition","volume":"44 10","pages":"1777 - 1790"},"PeriodicalIF":4.5000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10483-023-3040-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Mechanics-English Edition","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10483-023-3040-8","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a distributed control method based on the differential flatness (DF) property of robot swarms. The swarm DF mapping is established for underactuated differentially flat dynamics, according to the control objective. The DF mapping refers to the fact that the system state and input of each robot can be derived algebraically from the flat outputs of the leaders and the cooperative errors and their finite order derivatives. Based on the proposed swarm DF mapping, a distributed controller is designed. The distributed implementation of swarm DF mapping is achieved through observer design. The effectiveness of the proposed method is validated through a numerical simulation of quadrotor swarm synchronization.

欠驱动机器人群基于微分平面度的分布式控制
本文提出了一种基于机器人群微分平面度(DF)特性的分布式控制方法。根据控制目标,建立了欠驱动差分平坦动力学的群测向映射。DF映射是指每个机器人的系统状态和输入可以从领导者的平面输出和协作误差及其有限阶导数中代数导出。基于所提出的群测向映射,设计了一种分布式控制器。通过观测器设计实现了群测向映射的分布式实现。通过对四旋翼群同步的数值模拟,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
9.10%
发文量
106
审稿时长
2.0 months
期刊介绍: Applied Mathematics and Mechanics is the English version of a journal on applied mathematics and mechanics published in the People''s Republic of China. Our Editorial Committee, headed by Professor Chien Weizang, Ph.D., President of Shanghai University, consists of scientists in the fields of applied mathematics and mechanics from all over China. Founded by Professor Chien Weizang in 1980, Applied Mathematics and Mechanics became a bimonthly in 1981 and then a monthly in 1985. It is a comprehensive journal presenting original research papers on mechanics, mathematical methods and modeling in mechanics as well as applied mathematics relevant to neoteric mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信