{"title":"Dynamic Analysis of Deployable Strut-Mechanism with Clearance Root-Joints for Spacial Flexible Solar Array","authors":"Shuli Yang, Limin Shao, Yuhong Wang","doi":"10.1007/s42423-022-00124-6","DOIUrl":null,"url":null,"abstract":"<div><p>With Kane dynamics theory, the multi-body dynamic models of deployable struts are established with considering the clearance root-joint and the deployable style and deployable process of the struts are studied. The dynamic performance of struts’ deployment is analyzed, such as geometric position, velocity, and acceleration, seeking the inherent regularity of each joint’s motion characteristics. The results show that root-joint’s clearance has almost no influence on the rotation angle and angular velocity of base strut, but to some extent effect on the angular acceleration of base strut. Amplitude of angular acceleration appears significant fluctuations in 0–2 s and stabilizes gradually, indicating the pin in the bush is in the state of constant contact and separation. The dynamic model of deployable struts considering root-joint’s clearance represents more realistically the dynamic characteristics of this system. The different hinges suffer different contact forces, and its impact how effects on the mechanism movement is different. Therefore, Analysis of the dynamic performance and design of deployable struts need to consider the impact of hinge clearance, which gain the motion characteristics of important parts during deploying process, providing guidance for future design of mechanisms and driving forces.</p></div>","PeriodicalId":100039,"journal":{"name":"Advances in Astronautics Science and Technology","volume":"5 3","pages":"241 - 249"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronautics Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42423-022-00124-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
With Kane dynamics theory, the multi-body dynamic models of deployable struts are established with considering the clearance root-joint and the deployable style and deployable process of the struts are studied. The dynamic performance of struts’ deployment is analyzed, such as geometric position, velocity, and acceleration, seeking the inherent regularity of each joint’s motion characteristics. The results show that root-joint’s clearance has almost no influence on the rotation angle and angular velocity of base strut, but to some extent effect on the angular acceleration of base strut. Amplitude of angular acceleration appears significant fluctuations in 0–2 s and stabilizes gradually, indicating the pin in the bush is in the state of constant contact and separation. The dynamic model of deployable struts considering root-joint’s clearance represents more realistically the dynamic characteristics of this system. The different hinges suffer different contact forces, and its impact how effects on the mechanism movement is different. Therefore, Analysis of the dynamic performance and design of deployable struts need to consider the impact of hinge clearance, which gain the motion characteristics of important parts during deploying process, providing guidance for future design of mechanisms and driving forces.